// configuration.cpp // // Copyright (C) 2004-2020 MicroNeil Research Corporation. // // This software is released under the MIT license. See LICENSE.TXT. // // Tools for efficiently parsing XML, usually in configuration files. #include "configuration.hpp" namespace codedweller { //// Configuration Element ///////////////////////////////////////////////////// ConfigurationElement::ConfigurationElement(const char* Name) : // Construct with a cstring. myName(std::string(Name)), myParent(NULL), myLine(0), myIndex(0), myLength(0), myCleanFlag(true), myInitOnInterpretFlag(false) { } ConfigurationElement::ConfigurationElement(const std::string Name) : // Construct with a c++ string. myName(Name), myParent(NULL), myLine(0), myIndex(0), myLength(0), myCleanFlag(true), myInitOnInterpretFlag(false) { } ConfigurationElement::ConfigurationElement( // Construct sub element w/ cstring. const char* Name, ConfigurationElement& Parent) : myName(std::string(Name)), myParent(&Parent), myLine(0), myIndex(0), myLength(0), myCleanFlag(true), myInitOnInterpretFlag(false) { } ConfigurationElement::ConfigurationElement( // Construct sub element w/ string. const std::string Name, ConfigurationElement& Parent) : myName(Name), myParent(&Parent), myLine(0), myIndex(0), myLength(0), myCleanFlag(true), myInitOnInterpretFlag(false) { } std::string ConfigurationElement::Name() { return myName; } // Get the name of this element. ConfigurationElement& ConfigurationElement::Parent() { // Get the parrent of this element. if(NULL != myParent) { // If I have a parent return (*myParent); // then I dereference and return it. } // If I don't have a parent return (*this); // then I return myself. } ConfigurationElement& ConfigurationElement::Parent( // Set the parrent of this element. ConfigurationElement& Parent) { // Given this parent myParent = &Parent; // I take and store it's address return (*myParent); // then dereference and return it. } int ConfigurationElement::Line() { return myLine; } // Get the last line number. int ConfigurationElement::Index() { return myIndex; } // Get the last data position. int ConfigurationElement::Length() { return myLength; } // Get the last length. void ConfigurationElement::notifyDirty() { myCleanFlag = false; } // Attributes do this when they change. ConfigurationElement& ConfigurationElement::Element(const char* Name) { // Add a new sub element by c string name. return Element(std::string(Name)); // Use the string name version } ConfigurationElement& ConfigurationElement::Element(const std::string Name) { // Add a new sub element by c++ string name. ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the Name, // name provided and (*this)); // myself as the parent. myElements.push_back(N); // Add it to the list. return (*N); // Return the new element. } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. return Element(std::string(Name), newTranslator); // Use the string name version } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. return Element(std::string(Name), x, init); // Use the string name version } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. return Element(std::string(Name), x, init, radix); // Use the string name version } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, double& x, double init) { // Map to a double. return Element(std::string(Name), x, init); // Use the string name version } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. return Element(std::string(Name), x, init); // Use the string name version } ConfigurationElement& ConfigurationElement::End() { // Return this element's parent. return Parent(); // Borrow Parent() } ConfigurationElement& ConfigurationElement::End(const char* Name) { // Check the name and return the parent return End(std::string(Name)); // Borrow End(string) } ConfigurationElement& ConfigurationElement::End(const std::string Name) { // if the name is correct - or throw! if(0 != Name.compare(myName)) { // If Name is not myName throw EndNameDoesNotMatch(); // throw an exception! } // If the names match then return Parent(); // return the parent. } ConfigurationAttribute& ConfigurationElement::Attribute( // Add an attribute using a cstring. const char* Name) { // Given this cstring name return Attribute(std::string(Name)); // Convert it to a string and borrow } // Attribute(string) ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. return Attribute(std::string(Name), newTranslator); // Borrow the string name version } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. return Attribute(std::string(Name), x, init); // Borrow the string name version } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. return Attribute(std::string(Name), x, init); // Borrow the string name version } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, double& x, double init) { // Map to a double. return Attribute(std::string(Name), x, init); // Borrow the string name version } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. return Attribute(std::string(Name), x, init); // Borrow the string name version } ConfigurationElement& ConfigurationElement::setInitOnInterpret() { // Set the init on interpret flag. myInitOnInterpretFlag = true; // Set the flag. return(*this); // Dereference and return self. } ConfigurationElement& ConfigurationElement::atStartCall( // Add an atStart call-back. Configurator& Functor) { // Given this Functor, myStartConfigurators.push_back(&Functor); // add it to my atStart list then return(*this); // dereference and return myself. } ConfigurationElement& ConfigurationElement::atEndCall( // Add an atEnd call-back. Configurator& Functor) { // Given this Functor, myEndConfigurators.push_back(&Functor); // add it to my atEnd list then return(*this); // dereference and return myself. } ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c strings. const char* name, const char* value) { // Given char* and char* return Mnemonic(std::string(name), std::string(value)); // make strings and borrow that method. } ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. const char* name, const std::string value) { // Given char* and string return Mnemonic(std::string(name), value); // make strings and borrow that method. } ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. const std::string name, const char* value) { // Given string and char* return Mnemonic(name, std::string(value)); // make strings and borrow that method. } ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c++ strings. const std::string name, const std::string value) { // Givent string and string ConfigurationMnemonic* N = // Create a new Mnemonic new ConfigurationMnemonic(name, value); // using the values provided, myMnemonics.push_back(N); // add it to my list, then return(*this); // dereference and return myself. } //// Configuration Attribute /////////////////////////////////////////////////// ConfigurationAttribute::ConfigurationAttribute( // Attributes are constructed with a const char* Name, ConfigurationElement& Parent) : // Name and a Parent. myName(std::string(Name)), // We convert the name to a string. myParent(Parent), // We just grab the parent. myLine(0), // Everything else gets zeroed. myIndex(0), myLength(0) { } ConfigurationAttribute::ConfigurationAttribute( // Attributes are constrictued with a const std::string Name, ConfigurationElement& Parent) : // Name and a Parent. myName(Name), // We grab them and zero the rest. myParent(Parent), myLine(0), myIndex(0), myLength(0) { } std::string ConfigurationAttribute::Name() { // Get the name of this attribute. return myName; } ConfigurationElement& ConfigurationAttribute::Parent() { // Get the parent of this attribute. return myParent; } int ConfigurationAttribute::Line() { // Get the last line number. return myLine; } int ConfigurationAttribute::Index() { // Get the last data position. return myIndex; } int ConfigurationAttribute::Length() { // Get the last length. return myLength; } ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c string name. const char* Name) { return myParent.Element(Name); } ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c++ string name. const std::string Name) { return myParent.Element(Name); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. return myParent.Element(Name, newTranslator); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. return myParent.Element(Name, x, init); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. return myParent.Element(Name, x, init, radix); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, double& x, double init) { // Map to a double. return myParent.Element(Name, x, init); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const char* Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. return myParent.Element(Name, x, init); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. return myParent.Element(Name, newTranslator); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. return myParent.Element(Name, x, init); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. return myParent.Element(Name, x, init, radix); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, double& x, double init) { // Map to a double. return myParent.Element(Name, x, init); } ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. return myParent.Element(Name, x, init); } ConfigurationElement& ConfigurationAttribute::End() { // Return this element's parent. return myParent.End(); } ConfigurationElement& ConfigurationAttribute::End(const char* Name) { // Check the name and return the parent return myParent.End(Name); } ConfigurationElement& ConfigurationAttribute::End(const std::string Name) { // if the name is correct - or throw! return myParent.End(Name); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a cstring. const char* Name) { return myParent.Attribute(Name); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a c++ string. const std::string Name) { return myParent.Attribute(Name); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. return myParent.Attribute(Name, newTranslator); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. return myParent.Attribute(Name, x, init); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. return myParent.Attribute(Name, x, init, radix); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, double& x, double init) { // Map to a double. return myParent.Attribute(Name, x, init); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const char* Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. return myParent.Attribute(Name, x, init); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. return myParent.Attribute(Name, newTranslator); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. return myParent.Attribute(Name, x, init); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. return myParent.Attribute(Name, x, init, radix); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, double& x, double init) { // Map to a double. return myParent.Attribute(Name, x, init); } ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. return myParent.Attribute(Name, x, init); } ConfigurationElement& ConfigurationAttribute::setInitOnInterpret() { // Set the init on interpret flag. return myParent.setInitOnInterpret(); } ConfigurationElement& ConfigurationAttribute::atStartCall( // Add an atStart call-back to this element. Configurator& Functor) { return myParent.atStartCall(Functor); } ConfigurationElement& ConfigurationAttribute::atEndCall( // Add an atEnd call-back to this element. Configurator& Functor) { return myParent.atEndCall(Functor); } ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c strings. const char* name, const char* value) { // Given char* and char* return Mnemonic(std::string(name), std::string(value)); // make strings and borrow that method. } ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. const char* name, const std::string value) { // Given char* and string return Mnemonic(std::string(name), value); // make strings and borrow that method. } ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. const std::string name, const char* value) { // Given string and char* return Mnemonic(name, std::string(value)); // make strings and borrow that method. } ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c++ strings. const std::string name, const std::string value) { // Givent string and string ConfigurationMnemonic* N = // Create a new Mnemonic new ConfigurationMnemonic(name, value); // using the values provided, myMnemonics.push_back(N); // add it to my list, then return(*this); // dereference and return myself. } //// Configuration Data //////////////////////////////////////////////////////// char ConfigurationData::Data(int Index) { // Returns char from Data[Index] if(0 > Index || Index >= myBufferSize) { // Check that index is in range return 0; // and return 0 if it is not. } // If Index is within range then return myDataBuffer[Index]; // return the byte requested. } int ConfigurationData::Index() { // Reads the current Index. return myIndex; } int ConfigurationData::Index(int i) { // Changes the current Index. if(0 > i || i >= myBufferSize) { // If i is out of range then return myIndex; // return the current Index unchanged. } // If i is within range then myIndex = i; // change the Index to i and return myIndex; // return the changed Index. } int ConfigurationData::Line() { // Reads the current Line number. return myLine; } int ConfigurationData::addNewLines(int Count) { // Increments the Line number. myLine += Count; // Add the number of new lines. return myLine; // Return the current Line number. } //// Configuration Translator ////////////////////////////////////////////////// StringTranslator::StringTranslator( // Construct this with std::string& Variable, // the variable to map, std::string Initializer) : // and the default value. myVariable(Variable), myInitializer(Initializer) { } void StringTranslator::translate(const char* Value) { // Provide a translation method. myVariable = std::string(Value); // String to String = simple copy. } void StringTranslator::initialize() { // Provide an initialization method. myVariable = myInitializer; // Revert to the initializer value. } IntegerTranslator::IntegerTranslator( // Construct this with int& Variable, // the variable to map, int Initializer, // and the default value. int Radix) : // For this one we also need a Radix. myVariable(Variable), myInitializer(Initializer), myRadix(Radix) { } void IntegerTranslator::translate(const char* Value) { // Provide a translation method. char* dummy; // Throw away ptr for strtol(). myVariable = strtol(Value, &dummy, myRadix); // Convert the string w/ strtol(). } void IntegerTranslator::initialize() { // Provide an initialization method. myVariable = myInitializer; // Revert to the initializer value. } DoubleTranslator::DoubleTranslator( // Construct this with double& Variable, // the variable to map, double Initializer) : // and the default value. myVariable(Variable), myInitializer(Initializer) { } void DoubleTranslator::translate(const char* Value) { // Provide a translation method. char* dummy; // Throw away ptr for strtod(). myVariable = strtod(Value, &dummy); // Convert the string w/ strtod(). } void DoubleTranslator::initialize() { // Provide an initialization method. myVariable = myInitializer; // Revert to the initializer value. } BoolTranslator::BoolTranslator( // Construct this with bool& Variable, // the variable to map, bool Initializer) : // and the default value. myVariable(Variable), myInitializer(Initializer) { } void BoolTranslator::translate(const char* Value) { // Provide a translation method. if( (0 == strcmp(Value,"on")) || (0 == strcmp(Value,"true")) || // on, true, yes, and 1 are (0 == strcmp(Value, "yes")) || // interpreted as a boolean true. (0 == strcmp(Value, "1")) ) { myVariable = true; } else { // Anything else is interpreted as myVariable = false; // boolean false. } } void BoolTranslator::initialize() { // Provide an initialization method. myVariable = myInitializer; // Revert to the initializer value. } //// Configuration Mnemonic //////////////////////////////////////////////////// ConfigurationMnemonic::ConfigurationMnemonic( // To make one, provide both parts. std::string Name, std::string Value) : myName(Name), myValue(Value) { } bool ConfigurationMnemonic::test(std::string Name) { // Test to see if this Mnemonic matches. return (0 == Name.compare(myName)); // Return true if Name and myName match. } std::string ConfigurationMnemonic::Value() { // If it does then we will need it's value. return myValue; } //// Helper functions ////////////////////////////////////////////////////////// // isNameChar(const char x) // true if the character can be used in a name. bool isNameChar(const char x) { return ( isalnum(x) || ('.' == x) || ('-' == x) || ('_' == x) || (':' == x) ); } // Eat Spaces and Count Lines // While we're parsing the configuration file there are times we will need to // skip some amount of whitespace. While doing that we need to keep track of // any new-lines we cross so that we always know what line number we are on. // This function makes that work a one-liner in our parsing routines. int eatSpacesCountLines(ConfigurationData& Data, int& Index) { // Eat spaces and count lines. int LineCount = 0; // Keep the line count here. char C = 0; // Keep the current character here. for(;;) { // We'll be looping like this... C = Data.Data(Index); // Grab the character at the Index. if(0 == C) { // If we have run out of data break; // then we are certainly done. } if(isspace(C)) { // If it is a whitespace if('\n' == C) { // check to see if it's a new line ++LineCount; // and count it if it is. } // Since it was a space in any case ++Index; // move the index past it. } else { // As soon as we hit something not break; // a whitespace we are done looping. } } return LineCount; // In the end return the line count. } // Eat NonTagText Count Lines // This is a variation on the Eat Spaces theme except that it is used in an // element to bypass any floating text or spaces that might be in the file. In // a perfect world such a thing would not exist -- but just in case it does we // want to handle it gracefully. This function will get us to the first < that // we can find - presumably the opening tag of an element. int eatNonTagTextCountLines(ConfigurationData& Data, int& Index) { // Eat "stuff" and count lines. int LineCount = 0; // Keep the line count here. char C = 0; // Keep the current character here. for(;;) { // We'll be looping like this... C = Data.Data(Index); // Grab the character at the Index. if(0 == C) { // If we have run out of data break; // then we are certainly done. } if('\n' == C) { // check to see if it's a new line ++LineCount; // and count it if it is. } else if('<' == C) { // When we find our < we're done! break; } // If C wasn't what we're after ++Index; // move the index past this byte. } return LineCount; // In the end return the line count. } // Eat Comments Count Lines // This is another variant of Eat Spaces. In this if we are on a int eatCommentsCountLines(ConfigurationData& Data, int& Index) { // Eat any int LineCount = 0; // Keep the line count here. char C = 0; // Keep the current character here. // First - are we on a comment? if( // If the text at Index doesn't Data.Data(Index) != '<' || // look like the start of a Data.Data(Index + 1) != '!' || // comment then we are done. Data.Data(Index + 2) != '-' || Data.Data(Index + 3) != '-' ) { return 0; // Return after no changes. } // Since we are on a comment, let's eat Index += 4; // Move past the comment start. for(;;) { // We'll be looping like this... C = Data.Data(Index); // Grab the character at the Index. if(0 == C) { // If we have run out of data break; // then we are certainly done. } if('\n' == C) { // check to see if it's a new line ++LineCount; // and count it if it is. } else if('-' == C) { // When we find a - we check for --> if( '-' == Data.Data(Index + 1) && // If we have found the end of our '>' == Data.Data(Index + 2) // comment then we are ready to ) { // stop. Index += 3; // Move the Index past the end break; // and break out of the loop. } } // If C wasn't what we're after ++Index; // move the index past this byte. } return LineCount; // In the end return the line count. } // Eat DocSpecs Count Lines // Another variation of Eat Spaces - this time to eat int eatDocSpecsCountLines(ConfigurationData& Data, int& Index) { // Eat any int LineCount = 0; // Keep the line count here. char C = 0; // Keep the current character here. // First - are we on a doc spec? if( // If the text at Index doesn't Data.Data(Index) != '<' || // look like the start of a Data.Data(Index + 1) != '?' // doc spec then we are done. ) { return 0; // Return after no changes. } // Since we are on a doc spec, let's eat for(;;) { // We'll be looping like this... C = Data.Data(Index); // Grab the character at the Index. if(0 == C) { // If we have run out of data break; // then we are certainly done. } if('\n' == C) { // check to see if it's a new line ++LineCount; // and count it if it is. } else if('?' == C) { // When we find a - we check for ?> if('>' == Data.Data(Index + 1)) { // If we foudn the end we're done! Index += 2; // Move the Index past the end break; // and break out of the loop. } } // If C wasn't what we're after ++Index; // move the index past this byte. } return LineCount; // In the end return the line count. } // Eat Attribute Count Lines // Another variation of Eat Spaces - this time to eat unknown attributes. int eatAttributeCountLines(ConfigurationData& Data, int& Index) { // Eat Attribute ( name='data' ) int LineCount = 0; // Keep the line count here. char C = 0; // Keep the current character here. while(isNameChar(Data.Data(Index))) ++Index; // Eat through the name. LineCount += eatSpacesCountLines(Data, Index); // Eat any spaces. if('=' != Data.Data(Index)) { // We should have found our = sign. return LineCount; // If we did NOT then we're done. } else { // If we did, then we're still ++Index; // going - so move past it. } LineCount += eatSpacesCountLines(Data, Index); // Eat any extra spaces. C = Data.Data(Index); // Grab the next byte. if( // It should be either a '\'' != Data.Data(Index) && // single quote or a '\"' != Data.Data(Index) // double quote. ) { // If it is neither of these return LineCount; // then we are done. } else { // If it was a quote then ++Index; // get ready to go. } while(Data.Data(Index) != C) { // Carefully eat the data. if(0 == Data.Data(Index)) { // If we run out of Data return LineCount; // we are done. } else if('\n' == Data.Data(Index)) { // If we find a newline then ++LineCount; // we count it. } ++Index; // Whatever it is move past it. } // Once we've found our ending ++Index; // quote, we move past it and return LineCount; // return our Line count. } // Eat DocSpecs Count Lines // Another variation of Eat Spaces - this time to eat unknown elements. int eatElementCountLines(ConfigurationData& Data, int& Index) { // Eat Element ( .. ) int LineCount = 0; // Keep the line count here. // Are we on a tag? if( // If we are on an element tag then '<' != Data.Data(Index) || // it will start with a < followed by false == isNameChar(Data.Data(Index + 1)) // a name char (usually alpha). ) { // If that is not the case then return 0; // we are already done. } // Capture the tag name position. ++Index; // Move the Index to the start of the int NameIndex = Index; // name and record that spot. while(isNameChar(Data.Data(Index))) ++Index; // Move the Index past the name. int NameEndex = Index; // Record the end position. // Scan for the end of this tag. for(;;) { // We're looking for a > character. if(0 == Data.Data(Index)) { // If we run out of data return LineCount; // we are done. } LineCount += eatSpacesCountLines(Data, Index); // Eat any spaces. if( // Check for an empty element tag. '/' == Data.Data(Index) && // It will look like a / '>' == Data.Data(Index + 1) // followed by a > ) { // If this is an empty element Index += 2; // Move past it and return our return LineCount; // Line Count... consider it } // eaten. if('>' == Data.Data(Index)) { // If we come to an ordinary end ++Index; // of element start tag then move break; // past it and break out for the } // next phase. ++Index; // Just move past anything else. } // At this point we've passed the start tag for this element and // we know it's name. We also know the element is not empty so we'll // need to go inside it, eat those things, and look for it's end // tag. // Scan for the matching end tag and eat children. while( // Keep going until we get to '<' != Data.Data(Index) || // an end tag (starts with < followed '/' != Data.Data(Index + 1) // by a /). If we get to something that ) { // isn't a tag we're done anyway. int CheckIndex = Index; // Keep track of where we start. LineCount += eatNonTagTextCountLines(Data, Index); // Eat up to the next < we encounter. LineCount += eatElementCountLines(Data, Index); // Eat any elements we encounter. LineCount += eatCommentsCountLines(Data, Index); // Eat any comments we encounter. LineCount += eatDocSpecsCountLines(Data, Index); // Eat any doc specs we encounter. // If we stop moving break out! if(CheckIndex == Index) { // If we didn't move at all then break; // we need to break out. Could be } // out of data or just confused. }; if( // If we find we are not even on '<' != Data.Data(Index) || // an end tag then we'll just quit '/' != Data.Data(Index + 1) // right now. ) { return LineCount; // Even so we return our line count. } // If we find an end tag - it had better be the one we want. // If it is not then we'll return with the index pointing at the // offending end tag so that parent instances will have a shot at it // and/or discover the problem. int t = 0; // t is for terminus, it stays in scope. for(t = 0; (NameIndex + t) < NameEndex; t++) { // Scan over the name and make sure if(Data.Data(NameIndex + t) != Data.Data(Index + 2 + t)) { // it matches character by character. return LineCount; // If any don't match, the end tag is } // wron so we return w/ Index pointing } // at the bad end tag. if('>' == Data.Data(Index + 2 + t)) { // If the name matched and the next Index += (3 + t); // character is our > then we move the } // Index past it - all is good. // If not then we leave the index. return LineCount; // Either way we return the Line Count. } // Copy Data and Count Lines // At some point in the parsing, we need to extract content from our Data // stream and convert it into a null terminated c string. While we're at it // we also need to keep track of any new-line characters we cross so we will // still know what line we're on. This function makes that task a one-liner. int copyDataCountLines(char* Bfr, ConfigurationData& Data, int Start, int End) { int Lines = 0; // Keep track of the lines we cross. int DataIndex = Start; // The Data index is separate from int BfrIndex = 0; // our Bfr index. char C = 0; // We will be looking at each character. while(DataIndex < End) { // While there's more segment to do... C = Data.Data(DataIndex); // Grab each byte. Bfr[BfrIndex] = C; // Copy it to our buffer. if('\n' == C) { // Check to see if it's a new-line ++Lines; // and count it if it is. } ++BfrIndex; // Move our buffer and our ++DataIndex; // data index pointers and } // keep on going. Bfr[BfrIndex] = 0; // At the end, null terminate. return Lines; // Return our line count. } //// Configuration Element ///////////////////////////////////////////////////// ConfigurationElement::~ConfigurationElement() { // The descrutor clears and deletes all! // A configuration Element is "in charge of" or "owns" all of it's // down-stream components. So, when it is destroyed, it is responsible // for destroying all of those parts to prevent memory leaks. // Delete my attributes if(0 < myAttributes.size()) { // If we have attributes... std::list::iterator iAttribute; // Iterate through our attributes list. iAttribute = myAttributes.begin(); // Start at the beginning and while(iAttribute != myAttributes.end()) { // loop through the whole list. delete (*iAttribute); // Delete each attribute iAttribute++; // then move the iterator. } // When we're done deleting them myAttributes.clear(); // clear the list. } // Delete my sub-elements if(0 < myElements.size()) { // If we have elements... std::list::iterator iElement; // Iterate through our elements list. iElement = myElements.begin(); // Start at the beginning and while(iElement != myElements.end()) { // loop through the whole list. delete (*iElement); // Delete each element iElement++; // then move the iterator. } // When we're done deleting them myElements.clear(); // clear the list. } // Delete my mnemonics if(0 < myMnemonics.size()) { // If we have mnemonics... std::list::iterator iMnemonic; // Iterate through our mnemonics list. iMnemonic = myMnemonics.begin(); // Start at the beginning and while(iMnemonic != myMnemonics.end()) { // loop through the whole list. delete (*iMnemonic); // Delete each mnemonic iMnemonic++; // then move the iterator. } // When we're done deleting them myMnemonics.clear(); // clear the list. } // Delete my translators if(0 < myTranslators.size()) { // If we have translators... std::list::iterator iTranslator; // Iterate through our translators list. iTranslator = myTranslators.begin(); // Start at the beginning and while(iTranslator != myTranslators.end()) { // loop through the whole list. delete (*iTranslator); // Delete each translator iTranslator++; // then move the iterator. } // When we're done deleting them myTranslators.clear(); // clear the list. } // zero things out myLine = 0; // If I'm going away then I will leave myIndex = 0; // with everything at zero and clean. myLength = 0; myCleanFlag = true; } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the Name, // name provided and (*this)); // myself as the parent. myElements.push_back(N); // Add it to the list. N->mapTo(newTranslator); // Map the translator to it. return (*N); // Return the new element. } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the Name, // name provided and (*this)); // myself as the parent. myElements.push_back(N); // Add it to the list. N->mapTo(x, init); // Map the variable into it. return (*N); // Return the new element. } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the Name, // name provided and (*this)); // myself as the parent. myElements.push_back(N); // Add it to the list. N->mapTo(x, init, radix); // Map the variable into it. return (*N); // Return the new element. } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, double& x, double init) { // Map to a double. ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the Name, // name provided and (*this)); // myself as the parent. myElements.push_back(N); // Add it to the list. N->mapTo(x, init); // Map the variable into it. return (*N); // Return the new element. } ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, const std::string Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the Name, // name provided and (*this)); // myself as the parent. myElements.push_back(N); // Add it to the list. N->mapTo(x, init); // Map the variable into it. return (*N); // Return the new element. } ConfigurationAttribute& ConfigurationElement::Attribute(const std::string Name) { // Add an attribute using a c++ string. ConfigurationAttribute* N = // Create a new attribute by name and new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. myCleanFlag = false; // New attributes make us dirty. myAttributes.push_back(N); // Add the attribute to my list, return (*N); // dereference and return it. } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, ConfigurationTranslator& newTranslator) { // Add a Translator to this element. myCleanFlag = false; // New attributes make us dirty. ConfigurationAttribute* N = // Create a new attribute by name and new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. myAttributes.push_back(N); // Add the attribute to my list. N->mapTo(newTranslator); // Map in the provided translator. return(*N); // Dereference and return the attribute. } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, std::string& x, std::string init) { // Map to a string. myCleanFlag = false; // New attributes make us dirty. ConfigurationAttribute* N = // Create a new attribute by name and new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. myAttributes.push_back(N); // Add the attribute to my list. N->mapTo(x, init); // Map in the provided variable. return(*N); // Dereference and return the attribute. } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, int& x, int init, int radix) { // Map to an int. myCleanFlag = false; // New attributes make us dirty. ConfigurationAttribute* N = // Create a new attribute by name and new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. myAttributes.push_back(N); // Add the attribute to my list. N->mapTo(x, init, radix); // Map in the provided variable. return(*N); // Dereference and return the attribute. } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, double& x, double init) { // Map to a double. myCleanFlag = false; // New attributes make us dirty. ConfigurationAttribute* N = // Create a new attribute by name and new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. myAttributes.push_back(N); // Add the attribute to my list. N->mapTo(x, init); // Map in the provided variable. return(*N); // Dereference and return the attribute. } ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, const std::string Name, // requires a name, of course, bool& x, bool init) { // Map to a boolean. myCleanFlag = false; // New attributes make us dirty. ConfigurationAttribute* N = // Create a new attribute by name and new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. myAttributes.push_back(N); // Add the attribute to my list. N->mapTo(x, init); // Map in the provided variable. return(*N); // Dereference and return the attribute. } ConfigurationElement& ConfigurationElement::mapTo( // Add a Translator to this element. ConfigurationTranslator& newTranslator) { // Given a new translator I can own, myTranslators.push_back(&newTranslator); // add the translator to my list myCleanFlag = false; // get dirty for the new translator return(*this); // then dereference and return myself. } ConfigurationElement& ConfigurationElement::mapTo( // Map to a string. std::string& x, std::string init) { // Given a string and init value, ConfigurationTranslator* N = // create a new translator for it new StringTranslator(x, init); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myCleanFlag = false; // get dirty for the new translator return(*this); // then dereference and return myself. } ConfigurationElement& ConfigurationElement::mapTo( // Map to an int. int& x, int init, int radix) { // Given an int and init values, ConfigurationTranslator* N = // create a new translator for it new IntegerTranslator(x, init, radix); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myCleanFlag = false; // get dirty for the new translator return(*this); // then dereference and return myself. } ConfigurationElement& ConfigurationElement::mapTo( // Map to a double. double& x, double init) { // Given a double and it's init value, ConfigurationTranslator* N = // create a new translator for it new DoubleTranslator(x, init); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myCleanFlag = false; // get dirty for the new translator return(*this); // then dereference and return myself. } ConfigurationElement& ConfigurationElement::mapTo( // Map to a boolean. bool& x, bool init) { // Given a bool and it's init value, ConfigurationTranslator* N = // create a new translator for it new BoolTranslator(x, init); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myCleanFlag = false; // get dirty for the new translator return(*this); // then dereference and return myself. } void ConfigurationElement::initialize() { // Reset all translators to defaults. // Initialize the elements below me if(0 < myElements.size()) { // If we have elements... std::list::iterator iElement; // Iterate through our elements list. iElement = myElements.begin(); // Start at the beginning and while(iElement != myElements.end()) { // loop through the whole list. (*iElement)->initialize(); // Initialize each element iElement++; // then move the iterator. } } // Once that's done, see about myself if(true == myCleanFlag) return; // If I'm already clean, return. // Initialize my own translators if(0 < myTranslators.size()) { // If we have translators... std::list::iterator iTranslator; // Iterate through our translators list. iTranslator = myTranslators.begin(); // Start at the beginning and while(iTranslator != myTranslators.end()) { // loop through the whole list. (*iTranslator)->initialize(); // Initialize each translator iTranslator++; // then move the iterator. } } // Initialize my own attributes if(0 < myAttributes.size()) { // If we have attributes... std::list::iterator iAttribute; // Iterate through our attributes list. iAttribute = myAttributes.begin(); // Start at the beginning and while(iAttribute != myAttributes.end()) { // loop through the whole list. (*iAttribute)->initialize(); // Initialize each attribute ++iAttribute; // then move the iterator. } } // Zero things out myLine = 0; // Initialized means to be as if myIndex = 0; // no interpet() call has been made. myLength = 0; // At this point we know we are clean myCleanFlag = true; // Clean as a whistle! } void ConfigurationElement::runStartConfigurators(ConfigurationData& D) { // Does what it says ;-) std::list::iterator iConfigurator; // Iterate through our Configurators list. iConfigurator = myStartConfigurators.begin(); // Start at the beginning and while(iConfigurator != myStartConfigurators.end()) { // loop through the whole list. (** iConfigurator)(*this, D); // Launch each configurator with self. ++iConfigurator; // Move to the next. } } void ConfigurationElement::runEndConfigurators(ConfigurationData& D) { // Does what it says ;-) std::list::iterator iConfigurator; // Iterate through our Configurators list. iConfigurator = myEndConfigurators.begin(); // Start at the beginning and while(iConfigurator != myEndConfigurators.end()) { // loop through the whole list. (** iConfigurator)(*this, D); // Launch each configurator with self. ++iConfigurator; // Move to the next. } } bool ConfigurationElement::interpret(ConfigurationData& Data) { // (re) Interpret this data. int Index = Data.Index(); // Our working index. int Startdex = 0; // Where our data starts. int Stopdex = 0; // Where our data stops. int NewLines = 0; // Keep a count of new lines. //// Pre-Processing / Cleanup / Find // Eat any doctype headers for(;;) { int StartingPoint = Index; // Where did we start each pass? NewLines += eatNonTagTextCountLines(Data, Index); // Eat any spaces we find. NewLines += eatCommentsCountLines(Data, Index); // Eat any NewLines += eatDocSpecsCountLines(Data, Index); // Eat any if(StartingPoint == Index) { break; } // If we didn't move on this pass } // then we are done with cleanup! // Update Data to move past any of the preceeding junk. This way, other // element processors will be able to skip any cleanup work we did. Data.Index(Index); // Move the Index. Data.addNewLines(NewLines); // Update the Line Number. NewLines = 0; // Reset our internal Lines counter. // Find my name. if(Data.Data(Index) != '<') { // If we're not on a tag open then return false; // we are not at an element. } else { // Otherwise we are safe to move ++Index; // past it and scan for our name. } for(unsigned int I = 0; I < myName.length(); I++) { // For the length of our name, char x = Data.Data(Index + I); // get each corresponding Data byte if(x != myName.at(I)) { // check it sudden death style. return false; // No-Match means we are not it. } } // If the name checks out then Index += myName.length(); // move the Index past our name. // At this point we have found ourselves so we will activate and interpret // our Data. if(true == myInitOnInterpretFlag) { // If we are supposed to Init before initialize(); // we Interpret then do it. } // Since we are activating we must set our state so we know where we are. myLine = Data.Line(); // We know where we start... myIndex = Data.Index(); // We know our index... myLength = 0; // We don't know our length yet. runStartConfigurators(Data); // Run the start configurators. myCleanFlag = false; // Now we start to get dirty. // First, we will run through any attributes we have. bool ThisIsAnEmptyElement = false; // We'll use this to signal empties. for(;;) { // This is how we roll.. NewLines += eatSpacesCountLines(Data, Index); // Eat any spaces we find. Data.Index(Index); // Move the Index. Data.addNewLines(NewLines); // Update the Line Number. NewLines = 0; // Reset our internal Lines counter. // Now we look at the next character. Either it's an attribute, or // it's the end of the tag, or it's some kind of junk. If it's junk // we will skip it. We will continue parsing until we get to the end // of the Data or the end of the opening tag (either stopping at / if // the element is empty or > if the element is not empty. if(isalpha(Data.Data(Index))) { // If it looks like an attribute... bool ParseHappened = false; // Start pessimistically at each pass. std::list::iterator iAttribute; // Iterate through our attributes list. iAttribute = myAttributes.begin(); // Start at the beginning and while(iAttribute != myAttributes.end()) { // loop through the whole list. ParseHappened = (* iAttribute)->interpret(Data); // Have each attribute interpret(Data) ++iAttribute; // Remember to move to the next one. if(ParseHappened) break; // If a Parse Happened, break the inner } // loop and start the next pass. if(false == ParseHappened) { // If we didn't recognize the attribute NewLines += eatAttributeCountLines(Data, Index); // then eat it. Data.Index(Index); // Sync up our Index. Data.addNewLines(NewLines); // Sync up our NewLines. NewLines = 0; // Zero our NewLines count. } else { // If we DID recognize the attribute then Index = Data.Index(); // sync up our Index for the next one. } } else if(0 == Data.Data(Index)) { // If it looks like the end of Data break; // we will break out - we're done. } else if( // If it looks like the end of an empty '/' == Data.Data(Index) && // element (starts with / and ends with '>' == Data.Data(Index + 1) // >) then this must be an empty element. ) { ThisIsAnEmptyElement = true; // Set the empty element flag and Index += 2; // Move past the end of the tag and break; // break out of the loop. } else if('>' == Data.Data(Index)) { // If it looks like the end of an open Index += 1; // tag then move past the end and break; // break out of the loop. } else { // If it looks like anything else then ++Index; // we don't know what it is so we creep } // past it. } Data.Index(Index); // Sync up our index // At this point we're done processing our open tag and any attributes it // may have contained, and we are syncrhonized with Data. if(ThisIsAnEmptyElement) { // If the element was self closing then runEndConfigurators(Data); // run the End Configurators and return return true; // true to the caller. } // At this point we have contents and/or elements to process. We will keep // track of any contents using Startdex and Stopdex. Startdex = Index; // Now we will process through any elements there may be until we reach // our end tag. If we have no sub-elements listed, we'll simply skip that // step on each pass... So, we roll like this: // Check for end of Data. // Check for our end tag. // Check for a sub-element. // If none of these work then break out. for(;;) { // Loop through our content like this. int CheckPoint = Index; // Where did we start each pass? // Check for end of data // if(0 == Data.Data(Index)) { // If we are at end of data then we're return false; // broken so we return false. } else // Check for our own end tag // if( // If this looks like an end tag '<' == Data.Data(Index) && // (Starts with < followed by '/' == Data.Data(Index + 1) // a / character) ) { // Then it _should_ be our own. Stopdex = Index; // Capture this position for content. Index += 2; // Move Index to where the name starts. for(unsigned int I = 0; I < myName.length(); I++) { // For the length of the name, char x = Data.Data(Index + I); // check each corresponding Data byte. if(x != myName.at(I)) { // If we fail to match at any point return false; // then things are very broken } // so we return false. } // If the name checks out then Index += myName.length(); // move past our name. if('>' != Data.Data(Index)) { // Being very strict, if the next return false; // byte is not > then fail! } else { // If all goes well then we move ++Index; // past the > and we are done. break; // Break to move to the next step. } } else // Check for a subordinate element // if( // If this looks like an element '<' == Data.Data(Index) && // starting with < and a name isalpha(Data.Data(Index + 1)) // beginning with an alpha character... ) { bool ElementHappened = false; // We'll check our elements. Data.Index(Index); // Sync our index. Data.addNewLines(NewLines); // Sync our lines. NewLines = 0; // Reset our new lines count. if(0 < myElements.size()) { // If we have elements check them. std::list::iterator iElement; // Iterate through our elements list. iElement = myElements.begin(); // Start at the beginning and while(iElement != myElements.end()) { // loop through the whole list. ConfigurationElement& doNode = **iElement; // Grab the element we're on. ElementHappened = doNode.interpret(Data); // Have each element interpret(Data) Index = Data.Index(); // Capitalze on any cleanup work. ++iElement; // Remember to move to the next. if(ElementHappened) break; // If an Element Happened, break the } // loop and start the next pass. if(false == ElementHappened) { // If we did not recognize the Element NewLines += eatElementCountLines(Data, Index); // then eat it ***** Data.Index(Index); // Resync our Index. Data.addNewLines(NewLines); // Sync our line count. NewLines = 0; // Reset our internal count. } } else { // If we don't own any elements then NewLines += eatElementCountLines(Data, Index); // eat the ones we find. } // Handle any untidy messes here // } else { // If we're on something unknown then NewLines += eatSpacesCountLines(Data, Index); // Eat any spaces we find. NewLines += eatCommentsCountLines(Data, Index); // Eat any NewLines += eatDocSpecsCountLines(Data, Index); // Eat any NewLines += eatNonTagTextCountLines(Data, Index); // Eat any non tag bytes. Data.Index(Index); // Sync our Index. Data.addNewLines(NewLines); // Sync our line number. NewLines = 0; // Clear our lines count. } // If we get stuck looping on something we don't know how to clean // and don't know how to interpret then we need to break out of the // insanity. This way, anything that doesn't make sense won't be able // to stall us or cause us to interpret something incorrectly later // on... If we're the top element, the interpret() process will end. // If we are deeper then it is likely our superirors will also not // understand and so they will also end the same way. if(CheckPoint == Index) return false; // If we haven't moved, punt! } // When we're done with our loop sync up with Data again. Data.Index(Index); // Sync up our Index. Data.addNewLines(NewLines); // Sync up our NewLines count. NewLines = 0; // zero our local count. // Once our elements have been procssed and we get to our end tag we can // process our content (if we have Translators registered). if( 0 < myTranslators.size() && // If we have translators and Stopdex > Startdex // we have content to translate ) { // then translate the content! // Create the Content buffer... int BfrSize = Stopdex - Startdex +1; // How big a buffer do we need? std::vector heapBfr(BfrSize,0); // Make one that size. char* Bfr = &heapBfr[0]; copyDataCountLines(Bfr, Data, Startdex, Stopdex); // Get our data and ignore our lines. // Now we can get on with translation. char* TranslationData = Bfr; // TranslationData is what we translate. // Translate our data by Mnemonic if(0 < myMnemonics.size()) { // If we have mnemonics... std::list::iterator iMnemonic; // Iterate through our mnemonics list. iMnemonic = myMnemonics.begin(); // Start at the beginning and while(iMnemonic != myMnemonics.end()) { // loop through the whole list. if(true == ((*iMnemonic)->test(TranslationData))) { // Check to see if the mnemonic matches. TranslationData = const_cast( // If it does match, substitute it's (*iMnemonic)->Value().c_str()); // value for translation and stop break; // looking. } else { // If it does not match, move to the ++iMnemonic; // next mnemonic and test again. } // That is, until we run out of } // mnemonics to test. } // Put our TranslationData through each Translator. std::list::iterator iTranslator; // Iterate through our translators list. iTranslator = myTranslators.begin(); // Start at the beginning and while(iTranslator != myTranslators.end()) { // loop through the whole list. (*iTranslator)->translate(TranslationData); // Pass the data to each one then ++iTranslator; // move on to the next. } } // And finally, after all is done successfully... runEndConfigurators(Data); // Launch the End Configurators. return true; // Return our success! } //// Configuration Attribute /////////////////////////////////////////////////// ConfigurationAttribute::~ConfigurationAttribute() { // Crush, Kill, Destroy! // Delete my mnemonics if(0 < myMnemonics.size()) { // If we have mnemonics... std::list::iterator iMnemonic; // Iterate through our mnemonics list. iMnemonic = myMnemonics.begin(); // Start at the beginning and while(iMnemonic != myMnemonics.end()) { // loop through the whole list. delete (*iMnemonic); // Delete each mnemonic iMnemonic++; // then move the iterator. } // When we're done deleting them myMnemonics.clear(); // clear the list. } // Delete my translators if(0 < myTranslators.size()) { // If we have translators... std::list::iterator iTranslator; // Iterate through our translators list. iTranslator = myTranslators.begin(); // Start at the beginning and while(iTranslator != myTranslators.end()) { // loop through the whole list. delete (*iTranslator); // Delete each translator iTranslator++; // then move the iterator. } // When we're done deleting them myTranslators.clear(); // clear the list. } // zero things out myLine = 0; // If I'm going away then I will leave myIndex = 0; // with everything at zero and clean. myLength = 0; } ConfigurationAttribute& ConfigurationAttribute::mapTo( // Add a Translator to this attribute. ConfigurationTranslator& newTranslator) { // Given a new translator I can own, myTranslators.push_back(&newTranslator); // add the translator to my list myParent.notifyDirty(); // get dirty for the new translator return(*this); // then dereference and return myself. } ConfigurationAttribute& ConfigurationAttribute::mapTo( // Map to a string. std::string& x, std::string init) { // Given a string and init value, ConfigurationTranslator* N = // create a new translator for it new StringTranslator(x, init); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myParent.notifyDirty(); // get dirty for the new translator return(*this); // dereference and return myself. } ConfigurationAttribute& ConfigurationAttribute::mapTo( // Map to an int. int& x, int init, int radix) { // Given an int and init values, ConfigurationTranslator* N = // create a new translator for it new IntegerTranslator(x, init, radix); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myParent.notifyDirty(); // get dirty for the new translator return(*this); // dereference and return myself. } ConfigurationAttribute& ConfigurationAttribute::mapTo( // Map to a double. double& x, double init) { // Given a double and it's init value, ConfigurationTranslator* N = // create a new translator for it new DoubleTranslator(x, init); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myParent.notifyDirty(); // get dirty for the new translator return(*this); // then dereference and return myself. } ConfigurationAttribute& ConfigurationAttribute::mapTo( // Map to a boolean. bool& x, bool init) { // Given a bool and it's init value, ConfigurationTranslator* N = // create a new translator for it new BoolTranslator(x, init); // with the values i'm given, myTranslators.push_back(N); // push it onto my list, then myParent.notifyDirty(); // get dirty for the new translator return(*this); // then dereference and return myself. } void ConfigurationAttribute::initialize() { // Reset all translators to defaults. if(0 < myTranslators.size()) { // If we have translators... std::list::iterator iTranslator; // Iterate through our translators list. iTranslator = myTranslators.begin(); // Start at the beginning and while(iTranslator != myTranslators.end()) { // loop through the whole list. (*iTranslator)->initialize(); // initialize each translator iTranslator++; // then move the iterator. } // When we're done deleting them } // zero things out myLine = 0; // Initialized means to be as if myIndex = 0; // no interpet() call has been made. myLength = 0; } bool ConfigurationAttribute::interpret(ConfigurationData& Data) { // (re) Interpret this data. int Index = Data.Index(); // Our working index. int Startdex = 0; // Where our data starts. int Stopdex = 0; // Where our data stops. int NewLines = 0; // Keep a count of new lines. // Find our name. for(unsigned int I = 0; I < myName.length(); I++) { // For the length of the name, char x = Data.Data(Index + I); // get each corresponding Data byte if(x != myName.at(I)) { // check it sudden death style. return false; // No-Match means we are not it. } } // If the name checks out then Index += myName.length(); // move the Index past our name. NewLines += eatSpacesCountLines(Data, Index); // Eat any spaces we find. // Find our = sign. if('=' != Data.Data(Index)) { // Next we should see an = return false; // If we don't we're done. } else { // If we do then we can ++Index; // move past it. } NewLines += eatSpacesCountLines(Data, Index); // Eat any spaces we find. // Find our first quote character. char QuoteCharacter = 0; if('\'' == Data.Data(Index) || '\"' == Data.Data(Index)) { // Next we should find ' or " QuoteCharacter = Data.Data(Index); // If we found it record it then ++Index; Startdex = Index; // move to and record our start of data. } else { // If we don't return false; // we are done. } // Find our last quote character. for(;;) { // Here is how we will roll... char C = Data.Data(Index); // Grab the character at Index. if(0 == C) { // If we run out of Data then return false; // We didn't find anything. } if(QuoteCharacter == C) { // If we find our QuoteCharacter Stopdex = Index; // we have our Stopdex and break; // we can stop the loop. } ++Index; // Otherwise keep on looking. } // Read our data. int BfrSize = Stopdex - Startdex +1; // How big a buffer do we need? std::vector heapBfr(BfrSize,0); // Make one that size. char* Bfr = &heapBfr[0]; NewLines += copyDataCountLines(Bfr, Data, Startdex, Stopdex); // Get our data and count our lines. // Now we can get on with translation. char* TranslationData = Bfr; // TranslationData is what we translate. // Translate our data by Mnemonic if(0 < myMnemonics.size()) { // If we have mnemonics... std::list::iterator iMnemonic; // Iterate through our mnemonics list. iMnemonic = myMnemonics.begin(); // Start at the beginning and while(iMnemonic != myMnemonics.end()) { // loop through the whole list. if(true == ((*iMnemonic)->test(TranslationData))){ // Check to see if the mnemonic matches. TranslationData = const_cast( // If it does match, substitute it's (*iMnemonic)->Value().c_str()); // value for translation and stop break; // looking. } else { // If it does not match, move to the ++iMnemonic; // next mnemonic and test again. } // That is, until we run out of } // mnemonics to test. } // Put our TranslationData through each Translator. if(0 < myTranslators.size()) { // We'd better have translators! std::list::iterator iTranslator; // Iterate through our translators list. iTranslator = myTranslators.begin(); // Start at the beginning and while(iTranslator != myTranslators.end()) { // loop through the whole list. (*iTranslator)->translate(TranslationData); // Pass the data to each one and ++iTranslator; // move on to the next one. } } // Capture our position data. myLine = Data.Line(); // Capture the line I was on. myIndex = Data.Index(); // Capture the Index where I started. myLength = Stopdex + 1 - myIndex; // Capture my segment length. // Update Data for the next segment. Data.Index(Stopdex + 1); // Move the Index. Data.addNewLines(NewLines); // Update the Line Number. return true; // If we got here, we succeeded! } //// Configuratino Data //////////////////////////////////////////////////////// char* newCStringBuffer(size_t requestedSize) { const char NullTerminator = 0; size_t safeSize = requestedSize + 1; char* theBufferPointer = new char[safeSize]; theBufferPointer[requestedSize] = NullTerminator; return theBufferPointer; } ConfigurationData::ConfigurationData(const char* Data, int Length) : // Raw constructor from buffer. myBufferSize(Length), // and it's length. myIndex(0), // Our Index is zero myLine(1) { // We start on line 1 myDataBuffer = newCStringBuffer(myBufferSize); // Allocate a buffer. memcpy(myDataBuffer, Data, myBufferSize); // Copy the data. } ConfigurationData::ConfigurationData(const char* FileName) : myDataBuffer(NULL), // No data buffer yet. myBufferSize(0), // No length yet. myIndex(0), // Our Index is zero myLine(1) { // We start on line 1 try { // Capture any throws. std::ifstream CFGFile(FileName); // Open the file. CFGFile.seekg(0,std::ios::end); // Seek to the end myBufferSize = CFGFile.tellg(); // to find out what size it is. myDataBuffer = newCStringBuffer(myBufferSize); // Make a new buffer the right size. CFGFile.seekg(0,std::ios::beg); // Seek to the beginning and CFGFile.read(myDataBuffer, myBufferSize); // read the file into the buffer. if(CFGFile.bad()) { // If the read failed, we're unusable! delete[] myDataBuffer; // Delete the buffer myDataBuffer = NULL; // and Null it's pointer. myBufferSize = 0; // Set the length to zero. } // Usually everything will work CFGFile.close(); // At the end, always close our file. } catch (...) { // If something went wrong clean up. if(NULL != myDataBuffer) { // If the data buffer was allocated delete[] myDataBuffer; // Delete the buffer myDataBuffer = NULL; // and Null it's pointer. } myBufferSize = 0; // The BufferSize will be zero } // indicating there is no Data. } ConfigurationData::ConfigurationData(const std::string FileName) : // Raw constructor from file. myDataBuffer(NULL), // No data buffer yet. myBufferSize(0), // No length yet. myIndex(0), // Our Index is zero myLine(1) { // We start on line 1 try { // Capture any throws. std::ifstream CFGFile(FileName.c_str()); // Open the file. CFGFile.seekg(0,std::ios::end); // Seek to the end myBufferSize = CFGFile.tellg(); // to find out what size it is. myDataBuffer = newCStringBuffer(myBufferSize); // Make a new buffer the right size. CFGFile.seekg(0,std::ios::beg); // Seek to the beginning and CFGFile.read(myDataBuffer, myBufferSize); // read the file into the buffer. if(CFGFile.bad()) { // If the read failed, we're unusable! delete[] myDataBuffer; // Delete the buffer myDataBuffer = NULL; // and Null it's pointer. myBufferSize = 0; // Set the length to zero. } // Usually everything will work CFGFile.close(); // At the end, always close our file. } catch (...) { // If something went wrong clean up. if(NULL != myDataBuffer) { // If the data buffer was allocated delete[] myDataBuffer; // Delete the buffer myDataBuffer = NULL; // and Null it's pointer. } myBufferSize = 0; // The BufferSize will be zero } // indicating there is no Data. } ConfigurationData::~ConfigurationData() { // Destroys the internal buffer etc. if(NULL != myDataBuffer) { // If we have allocated a buffer, delete[] myDataBuffer; // delete that buffer myDataBuffer = NULL; // and null the pointer. } myBufferSize = 0; // Zero everything for safety. myIndex = 0; myLine = 0; } //// Utilities ///////////////////////////////////////////////////////////////// // SetTrueOnComplete Configurator ////////////////////////////////////////////// ConfiguratorSetTrueOnComplete::ConfiguratorSetTrueOnComplete() : // Constructor ensures the pointer myBoolean(NULL) { // is NULL for safety. } void ConfiguratorSetTrueOnComplete::setup(bool& Target) { // The setup() method links us to a myBoolean = &Target; // target boolean. } void ConfiguratorSetTrueOnComplete::operator()( // The operator() ConfigurationElement& E, ConfigurationData& D) { // When activated, this fellow if(NULL != myBoolean) { // checks it's pointer for safety *myBoolean = true; // and if ok, sets the target to } // true. } } // End namespace codedweller