123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801 |
- // snf_engine.cpp
- //
- // (C) 1985-2004 MicroNeil Research Corporation
- // (C) 2005-2009 ARM Research Labs, LLC
- // See www.armresearch.com for the copyright terms.
- //
- // Derived from original work on cellular automation for complex pattern
- // reflex engine 1985 Pete McNeil (Madscientist)
- //
- // Derived from rapid scripting engine (token matrix) implementation 1987
- //
-
- // 20040419 _M Adding Verify() method. Beginning with version 2-3 of Message Sniffer
- // we are embedding a Mangler digest of the rulebase file. The Verify() method reconstructs
- // the digest and compares it. This ensures that no part of the rulebase file can be
- // corrupted without the snf2check utility detecting the problem. Prior to this version
- // it was possible to have undetected corruption in the middle of the rulebase file. The
- // Mangler digest will prevent that.
-
- // 20030130 _M Added testing section in TokenMatrix to throw an exeption if the file
- // is too small to be a valid matrix. The value is calculated based on the idea that a
- // valid matrix will have been encrypted in two segments so the file must be at least
- // as large as these two segments. This is intended to solve the zero-length-rulebase
- // bug where an access violation would occur if the file was of zero length.
-
- // 20021030 _M Creation of snf_engine module by dragging the sniffer pattern matching engine out
- // of the sniffer.cpp file.
-
- #include <unistd.h>
- #include <cstdio>
- #include <cctype>
- #include <ctime>
- #include <cstdlib>
- #include <fstream>
- #include <iostream>
- #include <string>
- #include <vector>
- #include "CodeDweller/mangler.hpp"
- #include "SNFMulti/snf_engine.hpp"
-
- using namespace std;
- using namespace CodeDweller;
-
- namespace SNFMulti {
-
- ///////////////////////////////////////////////////////////////////////////////////////////
- // BEGIN IMPLEMENTATIONS //////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////
-
- ///////////////////////////////////////////////////////////////////////////////////////////
-
- // Token Matrix Implementations ///////////////////////////////////////////////////////////
-
- // TokenMatrix::Load(filename)
-
- void TokenMatrix::Load(string& FileName) { // Initialize using a string for file name.
- Load(FileName.c_str()); // Convert the string to a null terminated
- } // char* and call the function below.
-
- void TokenMatrix::Load(const char* FileName) { // Initializes the token matrix by file name.
-
- ifstream MatrixFile(FileName,ios::binary); // Open the file.
- if(!MatrixFile.good()) // If anything is wrong with the file
- throw BadFile("TokenMatrix::Load()(!MatrixFile.good())"); // then throw a bad file exception.
-
- Load(MatrixFile); // Load the matrix from the file.
- MatrixFile.close(); // Be nice and clean up our file.
- }
-
- // TokenMatrix::Load(stream)
-
- const AbortCheck CompatibleIntSizeCheck("TokenMatrix::Load():CompatibleIntSizeCheck(sizeof(unsigned int)==4)");
-
- void TokenMatrix::Load(ifstream& F) { // Initializes the token matrix from a file.
- CompatibleIntSizeCheck(sizeof(unsigned int)==4); // Check our assumptions.
-
- MatrixSize = 0; // Clear out the old Matrix Size and array.
- if(Matrix) delete Matrix; // that is, if there is an array.
-
- F.seekg(0,ios::end); // Find the end of the file.
- MatrixSize = F.tellg() / sizeof(Token); // Calculate how many tokens.
- F.seekg(0); // Go back to the beginning.
-
- if(MatrixSize < MinimumValidMatrix) // If the matrix file is too small then
- throw BadMatrix("TokenMatrix::Load() (MatrixSize < MinimumValidMatrix)"); // we must reject it.
-
- Matrix = new Token[MatrixSize]; // Allocate an array of tokens.
-
- if(Matrix == NULL) // Check for an allocation error.
- throw BadAllocation("TokenMatrix::Load() Matrix == NULL)"); // and throw an exception if it happens.
-
- F.read( // Now read the file into the allocated
- reinterpret_cast<char*>(Matrix), // matrix by recasting it as a character
- (MatrixSize * sizeof(Token))); // buffer of the correct size.
-
- if(F.bad()) // If there were any problems reading the
- throw BadMatrix("TokenMatrix::Load() (F.bad())"); // matrix then report the bad matrix.
- }
-
- // TokenMatrix::Validate(key)
-
- void TokenMatrix::Validate(string& SecurityKey) { // Decrypts and validates the matrix.
-
- MANGLER ValidationChecker; // Create a mangler engine for validation.
-
- // In order to do the validation we must look at the token matrix as a sequence of bytes.
- // We will be decrypting the first and last SecurtySegmentSize of this sequence and then
- // detecting wether the appropriate security key has been properly encrypted in the end.
- // If we find everything as it should be then we can be sure that the two segments have
- // not been tampered with and that we have the correct security key.
-
- unsigned char* TokensAsBytes = reinterpret_cast<unsigned char*>(Matrix);
- int BytesInTokenMatrix = (MatrixSize * sizeof(Token));
-
- // Now that we have all of that stuff let's initialize our ValidationChecker.
-
- // Note that the length of our security key is always 24 bytes. The license
- // id is 8 bytes, the authentication code is 16 bytes. We don't bother to check
- // here because if it's wrong then nothing will decrypt and we'll have essentially
- // the same result. Note also that on the end of the rule file we pad this
- // encrypted security id with nulls so that we can create a string from it easily
- // and so that we have precisely 32 bytes which is the same size as 4 tokens.
- //
- // Note: The 32 byte value is in SecurityKeyBufferSize. This means that we can
- // accept security keys up to 31 bytes in length. We need the ending null to
- // assure our null terminated string is as expected. The security key block must
- // match up with the edges of tokens in the matrix so we pad the end with nulls
- // when encoding the security key in the encoded file.
-
- int SecurityKeyLength = SecurityKey.length(); // For the length of our key
- for(int a=0;a<SecurityKeyLength;a++) // feed each byte through the
- ValidationChecker.Encrypt(SecurityKey.at(a)); // mangler to evolve the key
- // state.
-
- // Now we're ready to decrypt the matrix... We start with the first segment.
-
- for(int a=0;a<SecuritySegmentSize;a++) // For the length of the segment
- TokensAsBytes[a] = // replace each byte with the
- ValidationChecker.Decrypt(TokensAsBytes[a]); // decrypted byte.
-
- // Next we decrypt the last security segment...
-
- for(int a= BytesInTokenMatrix - SecuritySegmentSize; a<BytesInTokenMatrix; a++)
- TokensAsBytes[a] =
- ValidationChecker.Decrypt(TokensAsBytes[a]);
-
- // Now that we've done this we should find that our SecurityKey is at the end
- // of the loaded token matrix... Let's look and find out shall we?!!!
-
- unsigned char* SecurityCheckKey = // Reference the check
- & TokensAsBytes[BytesInTokenMatrix-SecurityKeyBufferSize]; // space in the matrix.
-
- SecurityCheckKey[SecurityKeyBufferSize-1] = 0; // Add a safety null just in case.
-
- string SecurityCheck((char*)SecurityCheckKey); // Make a string.
-
- // By now we should have a SecurityCheck string to compare to our SecurityKey.
- // If they match then we know everything worked out and that our token matrix has
- // been decrypted properly. This is also a good indication that our token matrix
- // is not incomplete since if it were the decryption wouldn't work. Saddly, we
- // don't have the computing cycles to decrypt the entire file - so we won't be
- // doing that until we can load it in a server/daemon and then reuse it over and
- // over... Once that happens we will be able to detect tampering also.
-
- if(SecurityKey != SecurityCheck) // If the security keys don't match
- throw BadMatrix("TokenMatrix::Validate() (SecurityKey != SecurityCheck)"); // then we have an invalid matrix.
- }
-
- // TokenMatrix::Verify(key)
-
- void TokenMatrix::Verify(string& SecurityKey) { // Builds and verifies a file digest.
-
- MANGLER DigestChecker; // Create a mangler for the digest.
-
- // Gain access to our token matrix as bytes.
-
- unsigned char* TokensAsBytes = reinterpret_cast<unsigned char*>(Matrix);
- int BytesInTokenMatrix = (MatrixSize * sizeof(Token));
-
- // Initialize our digest engine with the security key.
-
- int SecurityKeyLength = SecurityKey.length(); // For the length of our key
- for(int a=0;a<SecurityKeyLength;a++) // feed each byte through the
- DigestChecker.Encrypt(SecurityKey.at(a)); // mangler to evolve the key
- // state.
- // Build the digest.
-
- int IndexOfDigest = // Find the index of the digest by
- BytesInTokenMatrix - // starting at the end of the matrix,
- SecurityKeyBufferSize - // backing up past the security key,
- RulebaseDigestSize; // then past the digest.
-
- int a=0; // Keep track of where we are.
- for(;a<IndexOfDigest;a++) // Loop through up to the digest and
- DigestChecker.Encrypt(TokensAsBytes[a]); // pump the file through the mangler.
-
- // Now that the digest is built we must test it.
- // The original was emitted by encrypting 0s so if we do the same thing we will match.
-
- for(int b=0;b<RulebaseDigestSize;b++) // Loop through the digest and compare
- if(DigestChecker.Encrypt(0)!=TokensAsBytes[a+b]) // our digest to the stored digest. If
- throw BadMatrix("TokenMatrix::Verify() Bad Digest"); // any byte doesn't match it's bad!
-
- // If we made it through all of that then we're valid :-)
-
- }
-
- void TokenMatrix::FlipEndian() { // Converts big/little endian tokens.
- unsigned int* UInts = reinterpret_cast<unsigned int*>(Matrix); // Grab the matrix as uints.
- int Length = ((MatrixSize * sizeof(Token)) / sizeof(unsigned int)); // Calculate it's size.
- for(int i = 0; i < Length; i++) { // Loop through the array of u ints
- unsigned int x = UInts[i]; // and re-order the bytes in each
- x = ((x & 0xff000000) >> 24) | // one to swap from big/little endian
- ((x & 0x00ff0000) >> 8) | // to little/big endian.
- ((x & 0x0000ff00) << 8) |
- ((x & 0x000000ff) << 24);
- UInts[i] = x; // Put the flipped int back.
- }
- }
-
- // Evaluator Implementations //////////////////////////////////////////////////////////////
-
- // 20030216 _M Optimization conversions
-
- // 20140119 _M Deprecated by jump table in evaluator
- // inline int Evaluator::i_lower() { return myEvaluationMatrix->i_lower; }
- // inline bool Evaluator::i_isDigit() { return myEvaluationMatrix->i_isDigit; }
- // inline bool Evaluator::i_isSpace() { return myEvaluationMatrix->i_isSpace; }
- // inline bool Evaluator::i_isAlpha() { return myEvaluationMatrix->i_isAlpha; }
-
-
- // Evaluator::Evaluator(position,evalmatrix) Constructor
-
- Evaluator::Evaluator(unsigned int s, EvaluationMatrix* m)
- : myEvaluationMatrix(m),
- JumpPoint(0),
- Condition(DOING_OK),
- NextEvaluator(NULL),
- StreamStartPosition(s),
- CurrentPosition(0),
- WildRunLength(0) { // Constructor...
-
- Matrix = myEvaluationMatrix->getTokens(); // Capture the token matrix I walk in.
- MatrixSize = myEvaluationMatrix->getMatrixSize(); // And get it's size.
- PositionLimit = MatrixSize - 256;
- }
-
- // Of course I may need to resolve some of the following
- // wildcard characters.
-
- int Evaluator::xLetter() { return (JumpPoint + WILD_LETTER); } // Match Any letter.
- int Evaluator::xDigit() { return (JumpPoint + WILD_DIGIT); } // Match Any digit.
- int Evaluator::xNonWhite() { return (JumpPoint + WILD_NONWHITE); } // Match Any non-whitespace.
- int Evaluator::xWhiteSpace() { return (JumpPoint + WILD_WHITESPACE); } // Match Any whitespace.
- int Evaluator::xAnyInline() { return (JumpPoint + WILD_INLINE); } // Match Any byte but new line.
- int Evaluator::xAnything() { return (JumpPoint + WILD_ANYTHING); } // Match Any character at all.
- int Evaluator::xRunGateway() { return (JumpPoint + RUN_GATEWAY); } // Match the run-loop gateway.
-
- // void Evaluator::doFollowOrMakeBuddy()
-
- void Evaluator::doFollowOrMakeBuddy(int xKey) {
-
- bool shouldFollow = (FALLEN_OFF == Condition); // What should we do?
-
- if(shouldFollow) { // This is how we follow
- Condition = DOING_OK;
- CurrentPosition = xKey +
- Matrix[xKey].Vector;
- }
-
- else { // This is how we make a buddy
- myEvaluationMatrix->
- AddEvaluator(StreamStartPosition,Matrix[xKey].Vector+xKey);
- }
- }
-
- void Evaluator::tryFollowingPrecisePath(unsigned short int i) {
- int xPrecise = JumpPoint + i; // Match Precise Character
- if(Matrix[xPrecise].Character() == i) { // If we've matched our path
- doFollowOrMakeBuddy(xPrecise);
- }
- if(DOING_OK == Condition) WildRunLength = 0;
- }
-
- void Evaluator::tryFollowingNoCasePath(unsigned short int i) {
- i = tolower(i);
- int xNoCase = JumpPoint + i; // Match caps to lower (case insensitive)
- if(Matrix[xNoCase].Character()==i){
- doFollowOrMakeBuddy(xNoCase);
- }
- if(DOING_OK == Condition) WildRunLength = 0;
- }
-
- void Evaluator::tryFollowingWildAlphaPath() {
- if(Matrix[xLetter()].Character()==WILD_LETTER){
- doFollowOrMakeBuddy(xLetter());
- }
- }
-
- void Evaluator::tryFollowingWildDigitPath() {
- if(Matrix[xDigit()].Character()==WILD_DIGIT){
- doFollowOrMakeBuddy(xDigit());
- }
- }
-
- void Evaluator::tryFollowingWildNonWhitePath() {
- if(Matrix[xNonWhite()].Character()==WILD_NONWHITE){
- doFollowOrMakeBuddy(xNonWhite());
- }
- }
-
- void Evaluator::tryFollowingWildWhitePath() {
- if(Matrix[xWhiteSpace()].Character()==WILD_WHITESPACE){
- doFollowOrMakeBuddy(xWhiteSpace());
- }
- }
-
- void Evaluator::tryFollowingWildInlinePath() {
- if(Matrix[xAnyInline()].Character()==WILD_INLINE){
- doFollowOrMakeBuddy(xAnyInline());
- }
- }
-
- void Evaluator::tryFollowingWildAnythingPath() {
- if(Matrix[xAnything()].Character()==WILD_ANYTHING){
- doFollowOrMakeBuddy(xAnything());
- }
- }
-
- void Evaluator::doFollowerJumpTable(unsigned short int i) {
- tryFollowingPrecisePath(i);
- // tryFollowingUppercasePath(); 0x41 - 0x5A
- // tryFollowingWildAlphaPath(); 0x61 - 0x7A
- // tryFollowingWildDigitPath(); 0x30 - 0x39
- // tryFollowingWildWhitePath(); 0x09 - 0x0D, 0x20
- // tryFollowingWildNonWhitePath(); > 0x20
- // tryFollowingWildInlinePath(); Not 0x0A, or 0x0D
-
- switch(i) {
-
- // These only match Precise, or WildAnything ...
- // NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, TAB, LF, VT, FF, CR, SO, SI
- case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
- case 0x08: {
- break;
- }
-
- // tab
- case 0x09: {
- tryFollowingWildWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // LF, VT, FF, CR, SO, SI
- case 0x0A: case 0x0B: case 0x0C: case 0x0D: case 0x0E: case 0x0F:
-
- // DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US
- case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
- case 0x18: case 0x19: case 0x1A: case 0x1B: case 0x1C: case 0x1D: case 0x1E: case 0x1F: {
- tryFollowingWildWhitePath();
- break;
- }
-
- // the final fronteer
- case 0x20: {
- tryFollowingWildWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // ! " # $ % & ' ( ) * + , - . /
- case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
- case 0x28: case 0x29: case 0x2A: case 0x2B: case 0x2C: case 0x2D: case 0x2E: case 0x2F: {
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // 0 - 9
- case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
- case 0x38: case 0x39: {
- tryFollowingWildDigitPath();
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // : ; < = > ? @
- case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F:
- case 0x40: {
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // A - Z
- case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
- case 0x48: case 0x49: case 0x4A: case 0x4B: case 0x4C: case 0x4D: case 0x4E: case 0x4F:
- case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
- case 0x58: case 0x59: case 0x5A: {
- tryFollowingNoCasePath(i);
- tryFollowingWildAlphaPath();
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // [ \ ] ^ _ `
- case 0x5B: case 0x5C: case 0x5D: case 0x5E: case 0x5F:
- case 0x60: {
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // a - z
- case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
- case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F:
- case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
- case 0x78: case 0x79: case 0x7A: {
- tryFollowingWildAlphaPath();
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
-
- // { | } ~
- case 0x7B: case 0x7C: case 0x7D: case 0x7E: case 0x7F: {
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- }
-
- // high ascii
- case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
- case 0x88: case 0x89: case 0x8A: case 0x8B: case 0x8C: case 0x8D: case 0x8E: case 0x8F:
- case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
- case 0x98: case 0x99: case 0x9A: case 0x9B: case 0x9C: case 0x9D: case 0x9E: case 0x9F:
- case 0xA0: case 0xA1: case 0xA2: case 0xA3: case 0xA4: case 0xA5: case 0xA6: case 0xA7:
- case 0xA8: case 0xA9: case 0xAA: case 0xAB: case 0xAC: case 0xAD: case 0xAE: case 0xAF:
- case 0xB0: case 0xB1: case 0xB2: case 0xB3: case 0xB4: case 0xB5: case 0xB6: case 0xB7:
- case 0xB8: case 0xB9: case 0xBA: case 0xBB: case 0xBC: case 0xBD: case 0xBE: case 0xBF:
- case 0xC0: case 0xC1: case 0xC2: case 0xC3: case 0xC4: case 0xC5: case 0xC6: case 0xC7:
- case 0xC8: case 0xC9: case 0xCA: case 0xCB: case 0xCC: case 0xCD: case 0xCE: case 0xCF:
- case 0xD0: case 0xD1: case 0xD2: case 0xD3: case 0xD4: case 0xD5: case 0xD6: case 0xD7:
- case 0xD8: case 0xD9: case 0xDA: case 0xDB: case 0xDC: case 0xDD: case 0xDE: case 0xDF:
- case 0xE0: case 0xE1: case 0xE2: case 0xE3: case 0xE4: case 0xE5: case 0xE6: case 0xE7:
- case 0xE8: case 0xE9: case 0xEA: case 0xEB: case 0xEC: case 0xED: case 0xEE: case 0xEF:
- case 0xF0: case 0xF1: case 0xF2: case 0xF3: case 0xF4: case 0xF5: case 0xF6: case 0xF7:
- case 0xF8: case 0xF9: case 0xFA: case 0xFB: case 0xFC: case 0xFD: case 0xFE: case 0xFF: {
- tryFollowingWildNonWhitePath();
- tryFollowingWildInlinePath();
- break;
- }
- }
-
- tryFollowingWildAnythingPath();
- }
-
- // Evaluator::EvaluateThis()
-
- Evaluator::States Evaluator::EvaluateThis(unsigned short int i) { // Follow the this byte.
-
- // First upgrade will be to DOING_OK, after that we launch buddies.
-
- Condition = FALLEN_OFF; // Start off guessing we'll fall off.
-
- // In order to handle wildcard characters, this evaluation function must actually
- // compare the character to a number of possibilities in most-specific to least-
- // specific order to see if any match. In order to support overlapping rule sets,
- // if more than one wildcard matches at this node, an additional evaluator will be
- // placed in line already _AT THIS PATH POINT_ so that both possibilities will be
- // explored. New evaluators are always added at the TOP of the list so we are always
- // guaranteed not to overdrive an evaluator and end up in a recursive race condition.
-
- // 20140121_M The previous optimization with binary flags has been replaced with
- // a jump table implementation. Now, each byte only excites behaviors that are
- // possible for the current byte so only those paths will be tested.
-
- if(CurrentPosition >= PositionLimit) return Condition = OUT_OF_RANGE;
-
- // All of the positions calculated below are guaranteed to be within the ranges checked
- // above so we're safe if we get to this point.
-
- // So, at this point it's safe to check and see if I'm terminated. Note that if I
- // am at a termination point, my path has terminated and I have a symbol so I don't
- // need to resolve any more characters - even the current one.
-
- if(Matrix[CurrentPosition].isTermination()) return Condition = TERMINATED;
-
- // NOTE: The above is written for sudden-death termination. Eventually we will want
- // to support deep - filters which will show every rule match and this will need to
- // be rewritten.
-
- // Evaluation order, most-to-least specific with what is possible for that byte.
-
- JumpPoint = CurrentPosition;
- doFollowerJumpTable(i); // Excite followers based on this byte.
-
- { // Precise matches reset the wild run counter.
- ++WildRunLength; // Count up the run length.
- if(WildRunLength >= MaxWildRunLength) // If we exceed the max then
- return Condition = FALLEN_OFF; // we've fallen off the path
- } // and we do it immediately.
-
- // 20021112 _M
- // Beginning with version 2 of Message Sniffer we've implemented a new construct
- // for run-loops that prevents any interference between rules where run-loops might
- // appear in locations coinciding with standard match bytes. The new methodology
- // uses a special run-loop-gateway character to isolate any run loops from standard
- // nodes in the matrix. Whenever a run-loop gateway is present at a node a buddy is
- // inserted AFTER the current evaluator so that it will evaluate the current character
- // from the position of the run-loop gateway. This allows run loops to occupy the same
- // positional space as standard matches while maintaining isolation between their paths
- // in the matrix.
-
- // We don't want to launch any run loop buddies unless we matched this far. If we did
- // match up to this point and the next character in a pattern includes a run loop then
- // we will find a gateway byte at this point representing the path to any run loops.
-
- // If we made it this far launch a buddy for any run-loop gateway that's present.
- // Of course, the buddy must be evaluated after this evaluator during this pass because
- // he will have shown up late... That is, we don't detect a run gateway until we're
- // sitting on a new node looking for a result... The very result we may be looking for
- // could be behind the gateway - so we launch the buddy behind us and he will be able
- // to match anything in this pass that we missed when looking for a non-run match.
-
- if(Matrix[xRunGateway()].Character() == RUN_GATEWAY)
- myEvaluationMatrix->
- InsEvaluator(StreamStartPosition,Matrix[xRunGateway()].Vector+xRunGateway());
-
- // At this point, we've tried all of our rules, and created any buddies we needed.
- // If we got a match, we terminated long ago. If we didn't, then we either stayed
- // on the path or we fell off. Either way, the flag is in Condition so we can send
- // it on.
-
- return Condition;
-
- }
-
- ///////////////////////////////////////////////////////////////////////////////////////////
- // EvaluationMatrix Implementations ///////////////////////////////////////////////////////
-
- // EvaluationMatrix::AddMatchRecord(int sp, int ep, int sym)
-
- // Most of this functionality is about deep scans - which have been put on hold for now
- // due to the complexity and the scope of the current application. For now, although
- // we will use this reporting mechanism, it will generally record only one event.
-
- MatchRecord* EvaluationMatrix::AddMatchRecord(int sp, int ep, int sym) {
-
- // 20030216 _M Added range check code to watch for corruption. Some systems have
- // reported matches with zero length indicating an undetected corruption. This
- // range check will detect and report it.
-
- if(sp==ep) // Check that we're in range - no zero
- throw OutOfRange("sp==ep"); // length pattern matches allowed!
-
- MatchRecord* NewMatchRecord = // Then, create the new result object
- new MatchRecord(sp,ep,sym); // by passing it the important parts.
-
- if(NewMatchRecord==NULL) // Check for a bad allocation and throw
- throw BadAllocation("NewMatchRecord==NULL"); // an exception if that happens.
-
- if(ResultList == NULL) { // If this is our first result we simply
- ResultList = NewMatchRecord; // add the result to our list, and of course
- LastResultInList = NewMatchRecord; // it is the end of the list as well.
- } else { // If we already have some results, then
- LastResultInList->NextMatchRecord = // we add the new record to the result list
- NewMatchRecord; // and record that the new record is now the
- LastResultInList = NewMatchRecord; // last result in the list.
- }
-
- return NewMatchRecord; // Return our new match record.
- }
-
-
- // EvaluationMatrix::AddEvaluator()
-
- // 20021112 _M
- // This function has be modified to include a check for duplicates as well as setting
- // the mount point for the new evaluator. This eliminates a good deal of code elsewhere
- // and encapsulates the complete operation. If a duplicate evaluator is found then the
- // function returns NULL indicating that nothing was done. In practic, no check is made
- // since any serious error conditions cause errors to be thrown from within this function
- // call. These notes apply to some extent to InsEvaluator which is copied from this function
- // and which has the only difference of putting the new evaluator after the current one
- // in the chain in order to support branch-out operations for loop sequences in the matrix.
-
- Evaluator* EvaluationMatrix::AddEvaluator(int s, unsigned int m) { // Adds a new evaluator at top.
-
- if(!isNoDuplicate(m)) return NULL; // If there is a duplicate do nothing.
-
- if(CountOfEvaluators >= MAX_EVALS) // If we've exceeded our population size
- throw MaxEvalsExceeded("Add:CountOfEvaluators >= MAX_EVALS"); // then throw an exception.
-
- Evaluator* NewEvaluator = SourceEvaluator(s,this); // Make up a new evaluator.
-
- if(NewEvaluator == NULL) // Check for a bad allocation and throw
- throw BadAllocation("Add:NewEvaluator == NULL"); // an exception if it happens.
-
- NewEvaluator->NextEvaluator = EvaluatorList; // Point the new evaluator to the list.
- EvaluatorList = NewEvaluator; // Then point the list head to
- // the new evaluator.
-
- NewEvaluator->CurrentPosition = m; // Esablish the mount point.
-
- ++CountOfEvaluators; // Add one to our evaluator count.
- if(CountOfEvaluators > MaximumCountOfEvaluators) // If the count is the biggest we
- MaximumCountOfEvaluators = CountOfEvaluators; // have seen then keep track of it.
-
- return NewEvaluator; // Return the new evaluator.
- }
-
- // EvaluationMatrix::InsEvaluator()
-
- Evaluator* EvaluationMatrix::InsEvaluator(int s, unsigned int m) { // Inserts a new evaluator.
-
- if(!isNoDuplicate(m)) return NULL; // If there is a duplicate do nothing.
-
- if(CountOfEvaluators >= MAX_EVALS) // If we've exceeded our population size
- throw MaxEvalsExceeded("Ins:CountOfEvaluators >= MAX_EVALS"); // then throw an exception.
-
- Evaluator* NewEvaluator = SourceEvaluator(s,this); // Make up a new evaluator.
-
- if(NewEvaluator == NULL) // Check for a bad allocation and throw
- throw BadAllocation("Ins:NewEvaluator == NULL"); // an exception if it happens.
-
- NewEvaluator->NextEvaluator = // Point the new evaluator where the
- CurrentEvaluator->NextEvaluator; // current evalautor points... then point
- CurrentEvaluator->NextEvaluator = // the current evaluator to this one. This
- NewEvaluator; // accomplishes the insert operation.
-
- NewEvaluator->CurrentPosition = m; // Esablish the mount point.
-
- ++CountOfEvaluators; // Add one to our evaluator count.
- if(CountOfEvaluators > MaximumCountOfEvaluators) // If the count is the biggest we
- MaximumCountOfEvaluators = CountOfEvaluators; // have seen then keep track of it.
-
- return NewEvaluator; // Return the new evaluator.
- }
-
- // EvaluationMatrix::DropEvaluator()
-
- void EvaluationMatrix::DropEvaluator() { // Drops the current evaluator from the matrix.
-
- Evaluator* WhereTo = CurrentEvaluator->NextEvaluator; // Where do we go from here?
-
- // First step is to heal the list as if the current evaluator were not present.
- // If there is no previous evaluator - meaning this should be the first one in the
- // list - then we point the list head to the next evaluator on the list (WhereTo)
-
- if(PreviousEvaluator != NULL) // If we have a Previous then
- PreviousEvaluator->NextEvaluator = WhereTo; // our next is it's next.
- else // If we don't then our next
- EvaluatorList = WhereTo; // is the first in the list.
-
- // Now that our list is properly healed, it's time to drop the dead evaluator and
- // get on with our lives...
-
- CurrentEvaluator->NextEvaluator = NULL; // Disconnect from any list.
- CacheEvaluator(CurrentEvaluator); // Drop the current eval.
-
- CurrentEvaluator = WhereTo; // Move on.
-
- --CountOfEvaluators; // Reduce our evaluator count.
-
- }
-
- Evaluator* findEvaluatorListTail(Evaluator* head) {
- Evaluator* next = head;
- while(NULL != (next->NextEvaluator)) next = next->NextEvaluator;
- return next;
- }
-
- void EvaluationMatrix::dropAllEvaluators() {
- bool haveActiveEvaluators = (NULL != EvaluatorList);
- if(haveActiveEvaluators) {
- Evaluator* tail = findEvaluatorListTail(EvaluatorList);
- tail->NextEvaluator = EvaluatorCache;
- EvaluatorCache = EvaluatorList;
- }
- PreviousEvaluator = NULL;
- CurrentEvaluator = NULL;
- EvaluatorList = NULL;
- CountOfEvaluators = 0;
- }
-
- void EvaluationMatrix::restartEngineAt(int newCharacterCount) {
- dropAllEvaluators();
- CountOfCharacters = newCharacterCount;
- }
-
-
- // EvaluationMatrix::EvaluateThis()
- //
- // This function returns the number of matches that were found. It is possible for more
- // than one evaluator to match on a single character.
- //
- // 0 indicates no matches were found.
- // >0 indicates some matches were found.
- // If there is a problem then an exception will be thrown.
-
- int EvaluationMatrix::EvaluateThis(unsigned short int i) {
-
- AddEvaluator(CountOfCharacters,0); // First, add a new Evaluator at the root of the
- // matrix for the current position in the scan
- // stream.
-
- // The new evaluator is now at the top of our list.
- // If there was a problem then an exception will have been thrown.
- // If our allocation worked ok, then we'll be here and ready to start scanning
- // the rule set with our current character.
-
- PassResult = 0; // Start by assuming we won't match.
- CurrentEvaluator = EvaluatorList; // Start at the top of the list.
- PreviousEvaluator = NULL; // NULL means previous is the top.
-
- // 20030216 _M
- // Next do some basic conversions and evaluations so they don't need to be done
- // again within the evaluators. From now on the evaluators will look here for basic
- // conversions and boolean check values rather than performing the checks themselves.
-
- // 20140119 _M deprecated by jump table in evaluator
- // i_lower = tolower(i); // Convert i to lower case.
- // i_isDigit = isdigit(i); // Check for a digit.
- // i_isSpace = isspace(i); // Check for whitespace.
- // i_isAlpha = isalpha(i); // Check for letters.
-
- // Next, loop through the list and pass the incoming character to
- // each evaluator. Drop those that fall off, and record those that terminate. The
- // rest of them stick around to walk their paths until they meet their fate.
-
- while(CurrentEvaluator != NULL) { // While there are more evaluators...
- // go through the list and evaluate
- switch(CurrentEvaluator->EvaluateThis(i)) { // the current character against each.
-
- case Evaluator::FALLEN_OFF: { // If we've fallen off the path
- DropEvaluator(); // drop the current evaluator and
- break; // move on with our lives.
- }
-
- case Evaluator::DOING_OK: { // If we're still going then...
- PreviousEvaluator = CurrentEvaluator; // keep track of where we've been and
- CurrentEvaluator = // move forward to the next evaluator
- CurrentEvaluator->NextEvaluator; // in the list.
- break;
- }
-
- case Evaluator::TERMINATED: { // If we've terminated a path...
- ++PassResult; // Record our PassResult.
-
- // Create a new match result using the data in the current evaluator.
- // If there is a problem adding the match an exception will be thrown.
-
- AddMatchRecord(
- CurrentEvaluator->StreamStartPosition,
- CountOfCharacters - 1,
- myTokenMatrix->Symbol(CurrentEvaluator->CurrentPosition)
- );
-
- // From Version 2 onward we're always doing deep scans...
- // Having successfully recorded the result of this critter we can kill them off.
-
- DropEvaluator(); // He's dead.
- break; // Now let's keep looking.
- }
-
- case Evaluator::OUT_OF_RANGE: { // This result is really bad and
- throw OutOfRange("case Evaluator::OUT_OF_RANGE:"); // probably means we have a bad matrix.
- break;
-
- // The reason we don't throw OutOfRange from within the evaluator is that we
- // may want to take some other action in the future... So, we allow the evaluator
- // to tell us we sent it out of range and then we decide what to do about it.
-
- }
- }
- }
-
- // At the end of this function our PassResult is either an error (which is
- // reported immediately), or it is a match condition. We start out by assuming
- // there will be no match. If we find one, then we reset that result... so at
- // this point, all we need do is report our findings.
-
- ++CountOfCharacters; // Add one to our Character Count statistic.
-
- // Note that from this point on, the index in the stream is one less than the
- // CountOfCharacters... for example, if I've evaluated (am evaluating) one character
- // the it's index is 0. This will be important when we create any match records.
-
- return PassResult; // When we're finished, return the last known result.
- }
-
- void EvaluationMatrix::evaluateSegment(vector<unsigned char>& data, unsigned int start, unsigned int finish) {
- restartEngineAt(start);
- finish = (finish < data.size()) ? finish : data.size();
- for(unsigned int a = start; a < finish; a++) EvaluateThis(data[a]);
- }
-
- }
|