123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- // GBUdb.inline.hpp
- //
- // (C) Copyright 2006 - 2009 ARM Research Labs, LLC
- // See www.armresearch.com for the copyright terms.
- //
- // See GBUdb.hpp for details & notes.
- // This file contains inline implementations.
-
- //// GBUdbRecord Implementations ///////////////////////////////////////////////
-
- inline GBUdbRecord::GBUdbRecord() : // Initialize a new GBUdbRecord
- RawData(0) { // to ZERO.
- }
-
- inline GBUdbFlag GBUdbRecord::Flag() { // Return the flags.
- return (GBUdbFlag) (RawData & GBUdbFlagsMask); // Isolate the flags from the data & return.
- }
-
- inline GBUdbFlag GBUdbRecord::Flag(GBUdbFlag f) { // Set the flags.
- RawData = RawData & (~GBUdbFlagsMask); // Strip the current flags from RawData.
- RawData = RawData | f; // Put the new flags into RawData.
- return (GBUdbFlag) (RawData & GBUdbFlagsMask); // Return the flags now in RawData.
- }
-
- inline unsigned int GBUdbRecord::Good() { // Return the Good count.
- return ((RawData & GBUdbGoodMask) >> GBUdbGoodShift); // Isolate & shift the good count, return.
- }
-
- inline unsigned int GBUdbRecord::Good(unsigned int g) { // Set the good count.
- RawData = RawData & (~GBUdbGoodMask); // Strip the current good count.
- g = g & GBUdbLimit; // Make g safe (within bitfield limit).
- RawData = RawData | (g << GBUdbGoodShift); // Shift & combine g with RawData.
- return g; // Return the safe g value.
- }
-
- inline unsigned int GBUdbRecord::Bad() { // Get the bad count.
- return (RawData & GBUdbBadMask); // Isolate the bad data and return.
- }
-
- inline unsigned int GBUdbRecord::Bad(unsigned int b) { // Set the bad count.
- RawData = RawData & (~GBUdbBadMask); // Strip out the current bad count.
- b = b & GBUdbLimit; // Make b safe (strip any extra bits).
- RawData = RawData | b; // Combine RawData with the safe b.
- return b; // return the safe b.
- }
-
- inline unsigned int GBUdbRecord::addGood(unsigned int g) { // Add to the good count & normalize.
- unsigned int G = Good(); // Get the good.
- unsigned int B = Bad(); // Get the bad.
- G = G + g; // Add the new g to the good.
- while(G > GBUdbLimit) { // If normalization is required
- G = G >> 1; // then reduce the new good
- B = B >> 1; // and bad counts by half
- } // until things are normalized.
- Good(G); // Then go ahead and set the
- Bad(B); // new value(s) into place.
- return G; // Return the new good count.
- }
-
- inline unsigned int GBUdbRecord::addBad(unsigned int b) { // Add to the bad count & normalize.
- unsigned int G = Good(); // Get the good.
- unsigned int B = Bad(); // Get the bad.
- B = B + b; // Add the new b to the bad.
- while(B > GBUdbLimit) { // If normalization is required
- G = G >> 1; // then reduce the new good
- B = B >> 1; // and bad counts by half
- } // until things are normalized.
- Good(G); // Then go ahead and set the
- Bad(B); // new value(s) into place.
- return B; // Return the new good count.
- }
-
- inline GBUdbRecord& GBUdbRecord::integrate(GBUdbRecord& A, int LocalWeight, int RemoteWeight) { // Integrate A
-
- unsigned int Gl = Good(); // Get the good and
- unsigned int Bl = Bad(); // bad counts from
- unsigned int Gr = A.Good(); // the local and
- unsigned int Br = A.Bad(); // remote records.
-
- Gl = (Gl * LocalWeight) + (Gr * RemoteWeight); // Combine the Good and
- Bl = (Bl * LocalWeight) + (Br * RemoteWeight); // bad counts using the weights.
-
- while(Gl > GBUdbLimit || Bl > GBUdbLimit) { // Normalize the counts by
- Gl = Gl >> 1; // dividing both in half until
- Bl = Bl >> 1; // they are both within limits.
- }
- Good(Gl); // Then set the new Good
- Bad(Bl); // and bad values and return
- return *this; // this object.
- }
-
- inline GBUdbIndex GBUdbRecord::Index() { // Read the record as an index.
- return (GBUdbIndex) RawData;
- }
-
- inline GBUdbIndex GBUdbRecord::Index(GBUdbIndex i) { // Write the index value of the record.
- RawData = (unsigned int) i;
- return (GBUdbIndex) RawData;
- }
-
- // Probability is about the ratio of a given event to the total events.
- // In this case, positive probabilities indicate a tendency toward spam and
- // negative probabilities indicate a tendency toward ham.
-
- inline double GBUdbRecord::Probability() { // Calculate the probability of spam
- unsigned int G = Good(); // Get the good and
- unsigned int B = Bad(); // bad counts and
- double P = 0.0; // grab a double to hold P.
- if(0 == B + G) { // If we have no counts yet
- return P; // then return a zero probability.
- } // If we have counts lets do the math.
- P = ((double) B - (double) G) / ((double) B + (double) G); // Calculate the differential
- return P; // probability and return it.
- }
-
- // The confidence we have in a probability is related to the number of samples
- // that are present. We calculate the confidence on a logarithmic scale between
- // one sample and half the maximum number by category (good or bad) because
- // during condensation all counts may be reduced by half. That is, a 100%
- // confidence is achieved when a record contains a total of half the maximum
- // number of counts for a single category.
-
- inline double GBUdbRecord::Confidence() { // Calculate our confidence in prob.
- unsigned int Total = Good() + Bad(); // What is our total count of samples.
- if(0 == Total) return 0.0; // No samples is no confidence.
- double Confidence = (log((double)Total) / log((double)(GBUdbLimit/2))); // Calculate on a log scale.
- if(1.0 < Confidence) Confidence = 1.0; // Max confidence is 1.0.
- return Confidence; // Return the result.
- }
-
- //// GBUdbDataSet Inline Methods ///////////////////////////////////////////////
-
- inline GBUdbIndex GBUdbDataset::ixIPCount() { // Index of the IP count for this db.
- return MyArraySize + GBUdbIPCountOffset; // Return the offest from the end.
- }
-
- inline GBUdbIndex GBUdbDataset::ixNextFreeNode() { // Index of the Next Free Node.
- return MyArraySize + GBUdbNextFreeNodeOffset; // Return the offset from the end.
- }
-
- inline GBUdbIndex GBUdbDataset::newNodeRoot() { // Allocates a new node, returns offset.
- if(0 >= FreeNodes()) { // Check that we have free nodes to
- throw NoFreeNodes(); // allocate. If we don't then throw!
- }
- GBUdbIndex NewNode = DataArray[ixNextFreeNode()].Index(); // Grab the next new node index.
- DataArray[ixNextFreeNode()].Index(NewNode + GBUdbRecordsPerNode); // Move the allocator up a node.
- return NewNode; // Return the allocated node.
- }
-
- inline int GBUdbDataset::ArraySize() { // Return the current Array Size.
- return MyArraySize;
- }
-
- inline int GBUdbDataset::FreeNodes() { // Return the number of free nodes.
- int FreeRecords = MyArraySize - DataArray[ixNextFreeNode()].RawData; // Find the number of records left.
- int FreeNodes = (FreeRecords / GBUdbRecordsPerNode) - 1; // Convert to nodes and subtract the
- return FreeNodes; // control node, the return the value.
- }
-
- inline int GBUdbDataset::IPCount() { // Return the IP count.
- return DataArray[ixIPCount()].RawData;
- }
-
- inline int GBUdbDataset::increaseIPCount() { // When we add an IP to the db.
- return DataArray[ixIPCount()].RawData++; // Increment and return the IP count.
- }
-
- inline int GBUdbDataset::decreaseIPCount() { // When we drop an IP from the db.
- return DataArray[ixIPCount()].RawData--; // Decrement and return the IP count.
- }
-
- inline const char* GBUdbDataset::FileName() { // get the file name.
- return MyFileName.c_str();
- }
-
- inline unsigned int GBUdbDataset::EncodedMatch(unsigned int IP) { // Encode an IP as a MatchRecord header.
- return GBUdbMatchEntryBit | (IP & GBUdbMatchDataMask); // Use the MatchEntery bit and as much
- } // of the remaining IP data as possible.
-
- inline bool GBUdbDataset::isMatch(GBUdbIndex I) { // True if record at I is a match record.
- return (0 != (DataArray[I].RawData & GBUdbMatchEntryBit)); // Get the raw data and check for the bit.
- }
-
- inline bool GBUdbDataset::isMatch(GBUdbIndex I, unsigned int IP) { // True if record at I is a match for IP.
- return (DataArray[I].RawData == EncodedMatch(IP));
- }
-
- inline GBUdbRecord& GBUdbDataset::MatchedData(GBUdbIndex I) { // Returns the data for the match at I.
- return DataArray[I + 1]; // Since I points to the match record we
- } // return the record immedately after it.
-
- inline GBUdbRecord& GBUdbDataset::SafeUnknownRecord() { // Clears and returns the Safe record.
- MySafeUnknownRecord.RawData = GBUdbUnknown; // Clear the SafeUnknownRecord and
- return MySafeUnknownRecord; // return it as the result.
- }
-
- inline GBUdbIndex GBUdbDataset::ixMatchListRoot() { // Index of the Match List Root Index.
- return MyArraySize + GBUdbMatchListOffset;
- }
-
- inline void GBUdbDataset::increaseIPCountIfNew(GBUdbRecord& R) { // If R is GBUdbUnknown, IncreaseIPCount.
- if(GBUdbUnknown == R.RawData) { increaseIPCount(); } // If new, increase the IP count.
- }
-
- inline unsigned int GBUdbDataset::remapIP00toFF(unsigned int IP) { // Remaps final octet 00 to FF if needed.
- const int LowOctetMask = 0x000000FF; // Mask for seeing the low octet.
- if(0 == (IP & LowOctetMask)) { // If the lowest octet is 00 then
- return (IP | LowOctetMask); // change it to FF and return.
- } // If the lowest octet is something else
- return IP; // then return the IP as is.
- }
-
- inline void GBUdbDataset::deleteMatchAt(GBUdbIndex I) { // Recalls MatchRecord at I for reuse.
- GBUdbIndex Next = DataArray[ixMatchListRoot()].Index(); // Find the current allocation list root.
- DataArray[I].RawData = (Next | GBUdbMatchUnusedBit); // Point the current match to that root.
- DataArray[I+1].RawData = GBUdbUnknown; // Clean out any data the match had.
- DataArray[ixMatchListRoot()].Index(I); // Make this record the list root.
- }
-
- //// GBUdb Implementations /////////////////////////////////////////////////////
-
- inline GBUdb::GBUdb() : // Construct the db as new.
- PostsCounter(0) { // No posts yet.
- MyDataset = new GBUdbDataset(NULL); // Construct with no file name.
- }
-
- inline GBUdb::GBUdb(const char* FileName) : // Construct the db from a file.
- PostsCounter(0) { // No Posts yet.
- MyDataset = new GBUdbDataset(FileName); // Load the data set by name.
- }
-
- inline GBUdb::~GBUdb() { // Destroy the db object.
- if(NULL != MyDataset) { // Save first if we can.
- MyDataset->save();
- delete MyDataset;
- }
- }
-
- inline const char* GBUdb::FileName() { // Return the file name.
- return MyDataset->FileName();
- }
-
- inline const char* GBUdb::FileName(const char* NewName) { // Set/Change the file name.
- return MyDataset->FileName(NewName);
- }
-
- inline void GBUdb::save() { // Save the data.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- MyDataset->save(); // Save the dataset.
- PostsCounter = 0; // Reset the posts counter.
- }
-
- inline void GBUdb::load() { // Load the data.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- MyDataset->load(); // Load the dataset.
- }
-
- inline GBUdbRecord GBUdb::addGood(unsigned int IP, int i) { // Count an IP as good.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- ++PostsCounter; // Count this as a post.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the record.
- unsigned int C = X.addGood(i); // Add a count to the good side.
- recordAlertFor(IP, X ,C); // Record an alert if required.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::addBad(unsigned int IP, int i) { // Count an IP as bad.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- ++PostsCounter; // Count this as a post.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the reocrd.
- unsigned int C = X.addBad(i); // Add a count to the bad side.
- recordAlertFor(IP, X, C); // Record an alert if required.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::setGood(unsigned int IP) { // Set the flag to Good for this IP.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the reocrd.
- X.Flag(Good); // Set the Good flag.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::setBad(unsigned int IP) { // Set the flag to Bad for this IP.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the reocrd.
- X.Flag(Bad); // Set the Bad flag.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::setUgly(unsigned int IP) { // Set the flag to Ugly for this IP.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the reocrd.
- X.Flag(Ugly); // Set the Ugly flag.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::setIgnore(unsigned int IP) { // Set the flag to Ignore for this IP.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the reocrd.
- X.Flag(Ignore); // Set the Ignore flag.
- return X; // Return a copy for analysis.
- }
-
-
- inline GBUdbRecord GBUdb::getRecord(unsigned int IP) { // Retrieve an IP record.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- GBUdbRecord& X = MyDataset->readRecord(IP); // ReadOnly the reocrd.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::setRecord(unsigned int IP, GBUdbRecord& R) { // Store an IP record.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Invoke the reocrd.
- X = R; // Overwrite X with R.
- return X; // Return a copy for analysis.
- }
-
- inline GBUdbRecord GBUdb::adjustCounts(unsigned int IP, GBUdbRecord& R) { // Adds counts from R to record for IP.
- ScopeMutex JustMe(MyMutex); // Lock the data for this operation.
- GBUdbRecord& X = MyDataset->invokeRecord(IP); // Locate the record in the data.
- X.Bad(X.Bad() + R.Bad()); // Add the reflected adjustments
- X.Good(X.Good() + R.Good()); // to the good and bad counts.
- return X; // Return a copy for analysis.
- }
-
- inline bool GBUdb::dropRecord(unsigned int IP) { // Drop an IP record.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- return MyDataset->dropRecord(IP); // Pass on this call to our dataset.
- }
-
- inline int GBUdb::IPCount() { // Number of IPs stored.
- ScopeMutex JustMe(MyMutex);
- return MyDataset->IPCount();
- }
-
- inline int GBUdb::Size() { // Size of GBUdb in bytes.
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- return MyDataset->ArraySize() * sizeof(GBUdbRecord); // Total records converted to bytes.
- }
-
- inline double GBUdb::Utilization() { // Utilization (percent).
- ScopeMutex JustMe(MyMutex); // Lock the mutex during this operation.
- int TotalRecords = MyDataset->ArraySize(); // Calculate the total number of records.
- int FreeRecords = MyDataset->FreeNodes() * GBUdbRecordsPerNode; // Calculate the number of unused records.
- int UsedRecords = TotalRecords - FreeRecords; // Calcualte the number of used records.
- return // Calculate and return as double...
- ((double) UsedRecords) * 100.0 / // (Used Records * 100) / (TotalRecords)
- ((double) TotalRecords);
- }
-
- inline int GBUdb::Posts() { // Number of posts since last snapshot.
- int CurrentCount = PostsCounter; // Grab the current posts count.
- return CurrentCount; // Return the count we had.
- }
|