// base64codec.cpp | // base64codec.cpp | ||||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation | |||||
// See base64codec.hpp | |||||
//typedef vector<char> base64codec_buffer; | |||||
//typedef vector<char>::iterator base64codec_iterator; | |||||
// | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
#include "base64codec.hpp" | #include "base64codec.hpp" | ||||
namespace base64codec { | |||||
namespace codedweller { | |||||
const static char base64encode[65] = // Base64 encoding characters. | const static char base64encode[65] = // Base64 encoding characters. | ||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | ||||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX // F | XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX // F | ||||
}; | }; | ||||
} // End namespace base64codec | |||||
using namespace base64codec; | |||||
//// to_base64 ///////////////////////////////////////////////////////////////// | //// to_base64 ///////////////////////////////////////////////////////////////// | ||||
void to_base64::convert(const unsigned char* bfr, const int len) { // Converts from a char buffer. | void to_base64::convert(const unsigned char* bfr, const int len) { // Converts from a char buffer. | ||||
BadConversion = false; // If we get here we've done good. | BadConversion = false; // If we get here we've done good. | ||||
} | } | ||||
to_base64::to_base64(const vector<unsigned char>& bfr) : // Converts from a base64buffer. | |||||
to_base64::to_base64(const std::vector<unsigned char>& bfr) : // Converts from a base64buffer. | |||||
BadConversion(true) { // No conversion yet ;-) | BadConversion(true) { // No conversion yet ;-) | ||||
convert(&bfr[0], bfr.size()); // Recast the pointer and do it. | convert(&bfr[0], bfr.size()); // Recast the pointer and do it. | ||||
} | } | ||||
to_base64::to_base64(const vector<char>& bfr) : // Converts from a base64codec buffer. | |||||
to_base64::to_base64(const std::vector<char>& bfr) : // Converts from a base64codec buffer. | |||||
BadConversion(true) { // No conversion yet ;-) | BadConversion(true) { // No conversion yet ;-) | ||||
convert(reinterpret_cast<const unsigned char*>(&bfr[0]), bfr.size()); // Do this to get it done. | convert(reinterpret_cast<const unsigned char*>(&bfr[0]), bfr.size()); // Do this to get it done. | ||||
} | } | ||||
convert(reinterpret_cast<const unsigned char*>(bfr), len); // Do this to get it done. | convert(reinterpret_cast<const unsigned char*>(bfr), len); // Do this to get it done. | ||||
} | } | ||||
to_base64::to_base64(const string& s) : // Converts from a c++ string. | |||||
to_base64::to_base64(const std::string& s) : // Converts from a c++ string. | |||||
BadConversion(true) { // No conversion yet ;-) | BadConversion(true) { // No conversion yet ;-) | ||||
convert(reinterpret_cast<const unsigned char*>(s.c_str()), s.length()); // Do this to get it done. | convert(reinterpret_cast<const unsigned char*>(s.c_str()), s.length()); // Do this to get it done. | ||||
} | } | ||||
BadConversion = false; // If we get here we did ok. | BadConversion = false; // If we get here we did ok. | ||||
} | } | ||||
from_base64::from_base64(const vector<unsigned char>& bfr) : // Converts from a base64buffer. | |||||
from_base64::from_base64(const std::vector<unsigned char>& bfr) : // Converts from a base64buffer. | |||||
BadConversion(true) { // It's bad until we've done it. | BadConversion(true) { // It's bad until we've done it. | ||||
convert(&bfr[0], bfr.size()); // Recast the pointer and do it. | convert(&bfr[0], bfr.size()); // Recast the pointer and do it. | ||||
} | } | ||||
from_base64::from_base64(const vector<char>& bfr) : // Converts from a buffer. | |||||
from_base64::from_base64(const std::vector<char>& bfr) : // Converts from a buffer. | |||||
BadConversion(true) { // It's bad until we've done it. | BadConversion(true) { // It's bad until we've done it. | ||||
convert(reinterpret_cast<const unsigned char*>(&bfr[0]), bfr.size()); // This is how we do it. | convert(reinterpret_cast<const unsigned char*>(&bfr[0]), bfr.size()); // This is how we do it. | ||||
} | } | ||||
from_base64::from_base64(const string& s) : // Converts from a c++ string. | |||||
from_base64::from_base64(const std::string& s) : // Converts from a c++ string. | |||||
BadConversion(true) { // It's bad until we've done it. | BadConversion(true) { // It's bad until we've done it. | ||||
convert(reinterpret_cast<const unsigned char*>(s.c_str()), s.length()); // This is how we do it. | convert(reinterpret_cast<const unsigned char*>(s.c_str()), s.length()); // This is how we do it. | ||||
} | } | ||||
return BadConversion; | return BadConversion; | ||||
} | } | ||||
} // end namespace codedweller |
// base64codec.hpp | // base64codec.hpp | ||||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation | |||||
// BASE64 encoder decoder objects extending vectors | |||||
// | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | |||||
// Tools for encoding and decoding base64 data. | |||||
#ifndef base64codec_included | |||||
#define base64codec_included | |||||
#pragma once | |||||
#include <vector> | #include <vector> | ||||
#include <cstring> | #include <cstring> | ||||
#include <string> | #include <string> | ||||
using namespace std; | |||||
namespace codedweller { | |||||
typedef vector<unsigned char> base64buffer; | |||||
typedef std::vector<unsigned char> base64buffer; | |||||
class to_base64 : public base64buffer { // Converts binary data to base 64. | class to_base64 : public base64buffer { // Converts binary data to base 64. | ||||
private: | private: | ||||
void convert(const unsigned char* bfr, const int len); // Does the actual work. | void convert(const unsigned char* bfr, const int len); // Does the actual work. | ||||
public: | public: | ||||
to_base64(const vector<unsigned char>& bfr); // Converts from a base64buffer. | |||||
to_base64(const vector<char>& bfr); // Converts from a buffer. | |||||
to_base64(const string& s); // Converts from a c++ string. | |||||
to_base64(const std::vector<unsigned char>& bfr); // Converts from a base64buffer. | |||||
to_base64(const std::vector<char>& bfr); // Converts from a buffer. | |||||
to_base64(const std::string& s); // Converts from a c++ string. | |||||
to_base64(const char* s); // Converts from a c string. | to_base64(const char* s); // Converts from a c string. | ||||
to_base64(const unsigned char* bfr, const int len); // Converts from a uchar buffer. | to_base64(const unsigned char* bfr, const int len); // Converts from a uchar buffer. | ||||
to_base64(const char* bfr, const int len); // Converts from a char buffer. | to_base64(const char* bfr, const int len); // Converts from a char buffer. | ||||
void convert(const unsigned char* bfr, const int len); // Does the actual work. | void convert(const unsigned char* bfr, const int len); // Does the actual work. | ||||
public: | public: | ||||
from_base64(const vector<unsigned char>& bfr); // Converts from a base64buffer. | |||||
from_base64(const vector<char>& bfr); // Converts from a buffer. | |||||
from_base64(const string& s); // Converts from a c++ string. | |||||
from_base64(const std::vector<unsigned char>& bfr); // Converts from a base64buffer. | |||||
from_base64(const std::vector<char>& bfr); // Converts from a buffer. | |||||
from_base64(const std::string& s); // Converts from a c++ string. | |||||
from_base64(const char*); // Converts from a c_string. | from_base64(const char*); // Converts from a c_string. | ||||
bool Bad(); // True if conversion wasn't complete. | bool Bad(); // True if conversion wasn't complete. | ||||
}; | }; | ||||
#endif | |||||
} |
// configuration.cpp | // configuration.cpp | ||||
// | // | ||||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | // | ||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// See configuration.hpp for details | |||||
// Tools for efficiently parsing XML, usually in configuration files. | |||||
#include "configuration.hpp" | #include "configuration.hpp" | ||||
using namespace std; | |||||
namespace codedweller { | |||||
//// Configuration Element ///////////////////////////////////////////////////// | |||||
ConfigurationElement::ConfigurationElement(const char* Name) : // Construct with a cstring. | |||||
myName(std::string(Name)), | |||||
myParent(NULL), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
ConfigurationElement::ConfigurationElement(const std::string Name) : // Construct with a c++ string. | |||||
myName(Name), | |||||
myParent(NULL), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
ConfigurationElement::ConfigurationElement( // Construct sub element w/ cstring. | |||||
const char* Name, | |||||
ConfigurationElement& Parent) : | |||||
myName(std::string(Name)), | |||||
myParent(&Parent), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
ConfigurationElement::ConfigurationElement( // Construct sub element w/ string. | |||||
const std::string Name, | |||||
ConfigurationElement& Parent) : | |||||
myName(Name), | |||||
myParent(&Parent), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
std::string ConfigurationElement::Name() { return myName; } // Get the name of this element. | |||||
ConfigurationElement& ConfigurationElement::Parent() { // Get the parrent of this element. | |||||
if(NULL != myParent) { // If I have a parent | |||||
return (*myParent); // then I dereference and return it. | |||||
} // If I don't have a parent | |||||
return (*this); // then I return myself. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Parent( // Set the parrent of this element. | |||||
ConfigurationElement& Parent) { // Given this parent | |||||
myParent = &Parent; // I take and store it's address | |||||
return (*myParent); // then dereference and return it. | |||||
} | |||||
int ConfigurationElement::Line() { return myLine; } // Get the last line number. | |||||
int ConfigurationElement::Index() { return myIndex; } // Get the last data position. | |||||
int ConfigurationElement::Length() { return myLength; } // Get the last length. | |||||
void ConfigurationElement::notifyDirty() { myCleanFlag = false; } // Attributes do this when they change. | |||||
ConfigurationElement& ConfigurationElement::Element(const char* Name) { // Add a new sub element by c string name. | |||||
return Element(std::string(Name)); // Use the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Element(const std::string Name) { // Add a new sub element by c++ string name. | |||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | |||||
Name, // name provided and | |||||
(*this)); // myself as the parent. | |||||
myElements.push_back(N); // Add it to the list. | |||||
return (*N); // Return the new element. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return Element(std::string(Name), newTranslator); // Use the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
return Element(std::string(Name), x, init); // Use the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return Element(std::string(Name), x, init, radix); // Use the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return Element(std::string(Name), x, init); // Use the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return Element(std::string(Name), x, init); // Use the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::End() { // Return this element's parent. | |||||
return Parent(); // Borrow Parent() | |||||
} | |||||
ConfigurationElement& ConfigurationElement::End(const char* Name) { // Check the name and return the parent | |||||
return End(std::string(Name)); // Borrow End(string) | |||||
} | |||||
ConfigurationElement& ConfigurationElement::End(const std::string Name) { // if the name is correct - or throw! | |||||
if(0 != Name.compare(myName)) { // If Name is not myName | |||||
throw EndNameDoesNotMatch(); // throw an exception! | |||||
} // If the names match then | |||||
return Parent(); // return the parent. | |||||
} | |||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Add an attribute using a cstring. | |||||
const char* Name) { // Given this cstring name | |||||
return Attribute(std::string(Name)); // Convert it to a string and borrow | |||||
} // Attribute(string) | |||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return Attribute(std::string(Name), newTranslator); // Borrow the string name version | |||||
} | |||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
return Attribute(std::string(Name), x, init); // Borrow the string name version | |||||
} | |||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return Attribute(std::string(Name), x, init); // Borrow the string name version | |||||
} | |||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return Attribute(std::string(Name), x, init); // Borrow the string name version | |||||
} | |||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return Attribute(std::string(Name), x, init); // Borrow the string name version | |||||
} | |||||
ConfigurationElement& ConfigurationElement::setInitOnInterpret() { // Set the init on interpret flag. | |||||
myInitOnInterpretFlag = true; // Set the flag. | |||||
return(*this); // Dereference and return self. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::atStartCall( // Add an atStart call-back. | |||||
Configurator& Functor) { // Given this Functor, | |||||
myStartConfigurators.push_back(&Functor); // add it to my atStart list then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::atEndCall( // Add an atEnd call-back. | |||||
Configurator& Functor) { // Given this Functor, | |||||
myEndConfigurators.push_back(&Functor); // add it to my atEnd list then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c strings. | |||||
const char* name, const char* value) { // Given char* and char* | |||||
return Mnemonic(std::string(name), std::string(value)); // make strings and borrow that method. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const char* name, const std::string value) { // Given char* and string | |||||
return Mnemonic(std::string(name), value); // make strings and borrow that method. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const std::string name, const char* value) { // Given string and char* | |||||
return Mnemonic(name, std::string(value)); // make strings and borrow that method. | |||||
} | |||||
ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c++ strings. | |||||
const std::string name, const std::string value) { // Givent string and string | |||||
ConfigurationMnemonic* N = // Create a new Mnemonic | |||||
new ConfigurationMnemonic(name, value); // using the values provided, | |||||
myMnemonics.push_back(N); // add it to my list, then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
//// Configuration Attribute /////////////////////////////////////////////////// | |||||
ConfigurationAttribute::ConfigurationAttribute( // Attributes are constructed with a | |||||
const char* Name, ConfigurationElement& Parent) : // Name and a Parent. | |||||
myName(std::string(Name)), // We convert the name to a string. | |||||
myParent(Parent), // We just grab the parent. | |||||
myLine(0), // Everything else gets zeroed. | |||||
myIndex(0), | |||||
myLength(0) { | |||||
} | |||||
ConfigurationAttribute::ConfigurationAttribute( // Attributes are constrictued with a | |||||
const std::string Name, ConfigurationElement& Parent) : // Name and a Parent. | |||||
myName(Name), // We grab them and zero the rest. | |||||
myParent(Parent), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0) { | |||||
} | |||||
std::string ConfigurationAttribute::Name() { // Get the name of this attribute. | |||||
return myName; | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Parent() { // Get the parent of this attribute. | |||||
return myParent; | |||||
} | |||||
int ConfigurationAttribute::Line() { // Get the last line number. | |||||
return myLine; | |||||
} | |||||
int ConfigurationAttribute::Index() { // Get the last data position. | |||||
return myIndex; | |||||
} | |||||
int ConfigurationAttribute::Length() { // Get the last length. | |||||
return myLength; | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c string name. | |||||
const char* Name) { | |||||
return myParent.Element(Name); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c++ string name. | |||||
const std::string Name) { | |||||
return myParent.Element(Name); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Element(Name, newTranslator); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Element(Name, x, init, radix); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Element(Name, newTranslator); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Element(Name, x, init, radix); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::End() { // Return this element's parent. | |||||
return myParent.End(); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::End(const char* Name) { // Check the name and return the parent | |||||
return myParent.End(Name); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::End(const std::string Name) { // if the name is correct - or throw! | |||||
return myParent.End(Name); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a cstring. | |||||
const char* Name) { | |||||
return myParent.Attribute(Name); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a c++ string. | |||||
const std::string Name) { | |||||
return myParent.Attribute(Name); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Attribute(Name, newTranslator); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Attribute(Name, x, init, radix); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Attribute(Name, newTranslator); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Attribute(Name, x, init, radix); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::setInitOnInterpret() { // Set the init on interpret flag. | |||||
return myParent.setInitOnInterpret(); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::atStartCall( // Add an atStart call-back to this element. | |||||
Configurator& Functor) { | |||||
return myParent.atStartCall(Functor); | |||||
} | |||||
ConfigurationElement& ConfigurationAttribute::atEndCall( // Add an atEnd call-back to this element. | |||||
Configurator& Functor) { | |||||
return myParent.atEndCall(Functor); | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c strings. | |||||
const char* name, const char* value) { // Given char* and char* | |||||
return Mnemonic(std::string(name), std::string(value)); // make strings and borrow that method. | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const char* name, const std::string value) { // Given char* and string | |||||
return Mnemonic(std::string(name), value); // make strings and borrow that method. | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const std::string name, const char* value) { // Given string and char* | |||||
return Mnemonic(name, std::string(value)); // make strings and borrow that method. | |||||
} | |||||
ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c++ strings. | |||||
const std::string name, const std::string value) { // Givent string and string | |||||
ConfigurationMnemonic* N = // Create a new Mnemonic | |||||
new ConfigurationMnemonic(name, value); // using the values provided, | |||||
myMnemonics.push_back(N); // add it to my list, then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
//// Configuration Data //////////////////////////////////////////////////////// | |||||
char ConfigurationData::Data(int Index) { // Returns char from Data[Index] | |||||
if(0 > Index || Index >= myBufferSize) { // Check that index is in range | |||||
return 0; // and return 0 if it is not. | |||||
} // If Index is within range then | |||||
return myDataBuffer[Index]; // return the byte requested. | |||||
} | |||||
int ConfigurationData::Index() { // Reads the current Index. | |||||
return myIndex; | |||||
} | |||||
int ConfigurationData::Index(int i) { // Changes the current Index. | |||||
if(0 > i || i >= myBufferSize) { // If i is out of range then | |||||
return myIndex; // return the current Index unchanged. | |||||
} // If i is within range then | |||||
myIndex = i; // change the Index to i and | |||||
return myIndex; // return the changed Index. | |||||
} | |||||
int ConfigurationData::Line() { // Reads the current Line number. | |||||
return myLine; | |||||
} | |||||
int ConfigurationData::addNewLines(int Count) { // Increments the Line number. | |||||
myLine += Count; // Add the number of new lines. | |||||
return myLine; // Return the current Line number. | |||||
} | |||||
//// Configuration Translator ////////////////////////////////////////////////// | |||||
StringTranslator::StringTranslator( // Construct this with | |||||
std::string& Variable, // the variable to map, | |||||
std::string Initializer) : // and the default value. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer) { | |||||
} | |||||
void StringTranslator::translate(const char* Value) { // Provide a translation method. | |||||
myVariable = std::string(Value); // String to String = simple copy. | |||||
} | |||||
void StringTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
IntegerTranslator::IntegerTranslator( // Construct this with | |||||
int& Variable, // the variable to map, | |||||
int Initializer, // and the default value. | |||||
int Radix) : // For this one we also need a Radix. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer), | |||||
myRadix(Radix) { | |||||
} | |||||
void IntegerTranslator::translate(const char* Value) { // Provide a translation method. | |||||
char* dummy; // Throw away ptr for strtol(). | |||||
myVariable = strtol(Value, &dummy, myRadix); // Convert the string w/ strtol(). | |||||
} | |||||
void IntegerTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
DoubleTranslator::DoubleTranslator( // Construct this with | |||||
double& Variable, // the variable to map, | |||||
double Initializer) : // and the default value. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer) { | |||||
} | |||||
void DoubleTranslator::translate(const char* Value) { // Provide a translation method. | |||||
char* dummy; // Throw away ptr for strtod(). | |||||
myVariable = strtod(Value, &dummy); // Convert the string w/ strtod(). | |||||
} | |||||
void DoubleTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
BoolTranslator::BoolTranslator( // Construct this with | |||||
bool& Variable, // the variable to map, | |||||
bool Initializer) : // and the default value. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer) { | |||||
} | |||||
void BoolTranslator::translate(const char* Value) { // Provide a translation method. | |||||
if( | |||||
(0 == strcmp(Value,"on")) || | |||||
(0 == strcmp(Value,"true")) || // on, true, yes, and 1 are | |||||
(0 == strcmp(Value, "yes")) || // interpreted as a boolean true. | |||||
(0 == strcmp(Value, "1")) | |||||
) { | |||||
myVariable = true; | |||||
} else { // Anything else is interpreted as | |||||
myVariable = false; // boolean false. | |||||
} | |||||
} | |||||
void BoolTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
//// Configuration Mnemonic //////////////////////////////////////////////////// | |||||
ConfigurationMnemonic::ConfigurationMnemonic( // To make one, provide both parts. | |||||
std::string Name, std::string Value) : | |||||
myName(Name), | |||||
myValue(Value) { | |||||
} | |||||
bool ConfigurationMnemonic::test(std::string Name) { // Test to see if this Mnemonic matches. | |||||
return (0 == Name.compare(myName)); // Return true if Name and myName match. | |||||
} | |||||
std::string ConfigurationMnemonic::Value() { // If it does then we will need it's value. | |||||
return myValue; | |||||
} | |||||
//// Helper functions ////////////////////////////////////////////////////////// | //// Helper functions ////////////////////////////////////////////////////////// | ||||
// Delete my attributes | // Delete my attributes | ||||
if(0 < myAttributes.size()) { // If we have attributes... | if(0 < myAttributes.size()) { // If we have attributes... | ||||
list<ConfigurationAttribute*>::iterator iAttribute; // Iterate through our attributes list. | |||||
std::list<ConfigurationAttribute*>::iterator iAttribute; // Iterate through our attributes list. | |||||
iAttribute = myAttributes.begin(); // Start at the beginning and | iAttribute = myAttributes.begin(); // Start at the beginning and | ||||
while(iAttribute != myAttributes.end()) { // loop through the whole list. | while(iAttribute != myAttributes.end()) { // loop through the whole list. | ||||
delete (*iAttribute); // Delete each attribute | delete (*iAttribute); // Delete each attribute | ||||
// Delete my sub-elements | // Delete my sub-elements | ||||
if(0 < myElements.size()) { // If we have elements... | if(0 < myElements.size()) { // If we have elements... | ||||
list<ConfigurationElement*>::iterator iElement; // Iterate through our elements list. | |||||
std::list<ConfigurationElement*>::iterator iElement; // Iterate through our elements list. | |||||
iElement = myElements.begin(); // Start at the beginning and | iElement = myElements.begin(); // Start at the beginning and | ||||
while(iElement != myElements.end()) { // loop through the whole list. | while(iElement != myElements.end()) { // loop through the whole list. | ||||
delete (*iElement); // Delete each element | delete (*iElement); // Delete each element | ||||
// Delete my mnemonics | // Delete my mnemonics | ||||
if(0 < myMnemonics.size()) { // If we have mnemonics... | if(0 < myMnemonics.size()) { // If we have mnemonics... | ||||
list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
std::list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
iMnemonic = myMnemonics.begin(); // Start at the beginning and | iMnemonic = myMnemonics.begin(); // Start at the beginning and | ||||
while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | ||||
delete (*iMnemonic); // Delete each mnemonic | delete (*iMnemonic); // Delete each mnemonic | ||||
// Delete my translators | // Delete my translators | ||||
if(0 < myTranslators.size()) { // If we have translators... | if(0 < myTranslators.size()) { // If we have translators... | ||||
list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
std::list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
iTranslator = myTranslators.begin(); // Start at the beginning and | iTranslator = myTranslators.begin(); // Start at the beginning and | ||||
while(iTranslator != myTranslators.end()) { // loop through the whole list. | while(iTranslator != myTranslators.end()) { // loop through the whole list. | ||||
delete (*iTranslator); // Delete each translator | delete (*iTranslator); // Delete each translator | ||||
} | } | ||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | ||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ||||
} | } | ||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ||||
Name, // name provided and | Name, // name provided and | ||||
} | } | ||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | int& x, int init, int radix) { // Map to an int. | ||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ||||
} | } | ||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | double& x, double init) { // Map to a double. | ||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ||||
} | } | ||||
ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | bool& x, bool init) { // Map to a boolean. | ||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | ||||
return (*N); // Return the new element. | return (*N); // Return the new element. | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationElement::Attribute(const string Name) { // Add an attribute using a c++ string. | |||||
ConfigurationAttribute* N = // Create a new attribute by name and | |||||
new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. | |||||
ConfigurationAttribute& ConfigurationElement::Attribute(const std::string Name) { // Add an attribute using a c++ string. | |||||
ConfigurationAttribute* N = // Create a new attribute by name and | |||||
new ConfigurationAttribute(Name, (*this)); // provide myself as the parent. | |||||
myCleanFlag = false; // New attributes make us dirty. | myCleanFlag = false; // New attributes make us dirty. | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | ||||
myCleanFlag = false; // New attributes make us dirty. | myCleanFlag = false; // New attributes make us dirty. | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init) { // Map to a string. | |||||
myCleanFlag = false; // New attributes make us dirty. | myCleanFlag = false; // New attributes make us dirty. | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | int& x, int init, int radix) { // Map to an int. | ||||
myCleanFlag = false; // New attributes make us dirty. | myCleanFlag = false; // New attributes make us dirty. | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | double& x, double init) { // Map to a double. | ||||
myCleanFlag = false; // New attributes make us dirty. | myCleanFlag = false; // New attributes make us dirty. | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | bool& x, bool init) { // Map to a boolean. | ||||
myCleanFlag = false; // New attributes make us dirty. | myCleanFlag = false; // New attributes make us dirty. | ||||
} | } | ||||
ConfigurationElement& ConfigurationElement::mapTo( // Map to a string. | ConfigurationElement& ConfigurationElement::mapTo( // Map to a string. | ||||
string& x, string init) { // Given a string and init value, | |||||
std::string& x, std::string init) { // Given a string and init value, | |||||
ConfigurationTranslator* N = // create a new translator for it | ConfigurationTranslator* N = // create a new translator for it | ||||
new StringTranslator(x, init); // with the values i'm given, | new StringTranslator(x, init); // with the values i'm given, | ||||
myTranslators.push_back(N); // push it onto my list, then | myTranslators.push_back(N); // push it onto my list, then | ||||
// Initialize the elements below me | // Initialize the elements below me | ||||
if(0 < myElements.size()) { // If we have elements... | if(0 < myElements.size()) { // If we have elements... | ||||
list<ConfigurationElement*>::iterator iElement; // Iterate through our elements list. | |||||
std::list<ConfigurationElement*>::iterator iElement; // Iterate through our elements list. | |||||
iElement = myElements.begin(); // Start at the beginning and | iElement = myElements.begin(); // Start at the beginning and | ||||
while(iElement != myElements.end()) { // loop through the whole list. | while(iElement != myElements.end()) { // loop through the whole list. | ||||
(*iElement)->initialize(); // Initialize each element | (*iElement)->initialize(); // Initialize each element | ||||
// Initialize my own translators | // Initialize my own translators | ||||
if(0 < myTranslators.size()) { // If we have translators... | if(0 < myTranslators.size()) { // If we have translators... | ||||
list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
std::list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
iTranslator = myTranslators.begin(); // Start at the beginning and | iTranslator = myTranslators.begin(); // Start at the beginning and | ||||
while(iTranslator != myTranslators.end()) { // loop through the whole list. | while(iTranslator != myTranslators.end()) { // loop through the whole list. | ||||
(*iTranslator)->initialize(); // Initialize each translator | (*iTranslator)->initialize(); // Initialize each translator | ||||
// Initialize my own attributes | // Initialize my own attributes | ||||
if(0 < myAttributes.size()) { // If we have attributes... | if(0 < myAttributes.size()) { // If we have attributes... | ||||
list<ConfigurationAttribute*>::iterator iAttribute; // Iterate through our attributes list. | |||||
std::list<ConfigurationAttribute*>::iterator iAttribute; // Iterate through our attributes list. | |||||
iAttribute = myAttributes.begin(); // Start at the beginning and | iAttribute = myAttributes.begin(); // Start at the beginning and | ||||
while(iAttribute != myAttributes.end()) { // loop through the whole list. | while(iAttribute != myAttributes.end()) { // loop through the whole list. | ||||
(*iAttribute)->initialize(); // Initialize each attribute | (*iAttribute)->initialize(); // Initialize each attribute | ||||
} | } | ||||
void ConfigurationElement::runStartConfigurators(ConfigurationData& D) { // Does what it says ;-) | void ConfigurationElement::runStartConfigurators(ConfigurationData& D) { // Does what it says ;-) | ||||
list<Configurator*>::iterator iConfigurator; // Iterate through our Configurators list. | |||||
std::list<Configurator*>::iterator iConfigurator; // Iterate through our Configurators list. | |||||
iConfigurator = myStartConfigurators.begin(); // Start at the beginning and | iConfigurator = myStartConfigurators.begin(); // Start at the beginning and | ||||
while(iConfigurator != myStartConfigurators.end()) { // loop through the whole list. | while(iConfigurator != myStartConfigurators.end()) { // loop through the whole list. | ||||
(** iConfigurator)(*this, D); // Launch each configurator with self. | (** iConfigurator)(*this, D); // Launch each configurator with self. | ||||
} | } | ||||
void ConfigurationElement::runEndConfigurators(ConfigurationData& D) { // Does what it says ;-) | void ConfigurationElement::runEndConfigurators(ConfigurationData& D) { // Does what it says ;-) | ||||
list<Configurator*>::iterator iConfigurator; // Iterate through our Configurators list. | |||||
std::list<Configurator*>::iterator iConfigurator; // Iterate through our Configurators list. | |||||
iConfigurator = myEndConfigurators.begin(); // Start at the beginning and | iConfigurator = myEndConfigurators.begin(); // Start at the beginning and | ||||
while(iConfigurator != myEndConfigurators.end()) { // loop through the whole list. | while(iConfigurator != myEndConfigurators.end()) { // loop through the whole list. | ||||
(** iConfigurator)(*this, D); // Launch each configurator with self. | (** iConfigurator)(*this, D); // Launch each configurator with self. | ||||
if(isalpha(Data.Data(Index))) { // If it looks like an attribute... | if(isalpha(Data.Data(Index))) { // If it looks like an attribute... | ||||
bool ParseHappened = false; // Start pessimistically at each pass. | bool ParseHappened = false; // Start pessimistically at each pass. | ||||
list<ConfigurationAttribute*>::iterator iAttribute; // Iterate through our attributes list. | |||||
std::list<ConfigurationAttribute*>::iterator iAttribute; // Iterate through our attributes list. | |||||
iAttribute = myAttributes.begin(); // Start at the beginning and | iAttribute = myAttributes.begin(); // Start at the beginning and | ||||
while(iAttribute != myAttributes.end()) { // loop through the whole list. | while(iAttribute != myAttributes.end()) { // loop through the whole list. | ||||
ParseHappened = (* iAttribute)->interpret(Data); // Have each attribute interpret(Data) | ParseHappened = (* iAttribute)->interpret(Data); // Have each attribute interpret(Data) | ||||
NewLines = 0; // Reset our new lines count. | NewLines = 0; // Reset our new lines count. | ||||
if(0 < myElements.size()) { // If we have elements check them. | if(0 < myElements.size()) { // If we have elements check them. | ||||
list<ConfigurationElement*>::iterator iElement; // Iterate through our elements list. | |||||
std::list<ConfigurationElement*>::iterator iElement; // Iterate through our elements list. | |||||
iElement = myElements.begin(); // Start at the beginning and | iElement = myElements.begin(); // Start at the beginning and | ||||
while(iElement != myElements.end()) { // loop through the whole list. | while(iElement != myElements.end()) { // loop through the whole list. | ||||
ConfigurationElement& doNode = **iElement; // Grab the element we're on. | ConfigurationElement& doNode = **iElement; // Grab the element we're on. | ||||
// Create the Content buffer... | // Create the Content buffer... | ||||
int BfrSize = Stopdex - Startdex +1; // How big a buffer do we need? | int BfrSize = Stopdex - Startdex +1; // How big a buffer do we need? | ||||
vector<char> heapBfr(BfrSize,0); // Make one that size. | |||||
std::vector<char> heapBfr(BfrSize,0); // Make one that size. | |||||
char* Bfr = &heapBfr[0]; | char* Bfr = &heapBfr[0]; | ||||
copyDataCountLines(Bfr, Data, Startdex, Stopdex); // Get our data and ignore our lines. | copyDataCountLines(Bfr, Data, Startdex, Stopdex); // Get our data and ignore our lines. | ||||
// Translate our data by Mnemonic | // Translate our data by Mnemonic | ||||
if(0 < myMnemonics.size()) { // If we have mnemonics... | if(0 < myMnemonics.size()) { // If we have mnemonics... | ||||
list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
std::list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
iMnemonic = myMnemonics.begin(); // Start at the beginning and | iMnemonic = myMnemonics.begin(); // Start at the beginning and | ||||
while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | ||||
if(true == ((*iMnemonic)->test(TranslationData))) { // Check to see if the mnemonic matches. | if(true == ((*iMnemonic)->test(TranslationData))) { // Check to see if the mnemonic matches. | ||||
// Put our TranslationData through each Translator. | // Put our TranslationData through each Translator. | ||||
list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
std::list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
iTranslator = myTranslators.begin(); // Start at the beginning and | iTranslator = myTranslators.begin(); // Start at the beginning and | ||||
while(iTranslator != myTranslators.end()) { // loop through the whole list. | while(iTranslator != myTranslators.end()) { // loop through the whole list. | ||||
(*iTranslator)->translate(TranslationData); // Pass the data to each one then | (*iTranslator)->translate(TranslationData); // Pass the data to each one then | ||||
// Delete my mnemonics | // Delete my mnemonics | ||||
if(0 < myMnemonics.size()) { // If we have mnemonics... | if(0 < myMnemonics.size()) { // If we have mnemonics... | ||||
list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
std::list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
iMnemonic = myMnemonics.begin(); // Start at the beginning and | iMnemonic = myMnemonics.begin(); // Start at the beginning and | ||||
while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | ||||
delete (*iMnemonic); // Delete each mnemonic | delete (*iMnemonic); // Delete each mnemonic | ||||
// Delete my translators | // Delete my translators | ||||
if(0 < myTranslators.size()) { // If we have translators... | if(0 < myTranslators.size()) { // If we have translators... | ||||
list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
std::list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
iTranslator = myTranslators.begin(); // Start at the beginning and | iTranslator = myTranslators.begin(); // Start at the beginning and | ||||
while(iTranslator != myTranslators.end()) { // loop through the whole list. | while(iTranslator != myTranslators.end()) { // loop through the whole list. | ||||
delete (*iTranslator); // Delete each translator | delete (*iTranslator); // Delete each translator | ||||
} | } | ||||
ConfigurationAttribute& ConfigurationAttribute::mapTo( // Map to a string. | ConfigurationAttribute& ConfigurationAttribute::mapTo( // Map to a string. | ||||
string& x, string init) { // Given a string and init value, | |||||
std::string& x, std::string init) { // Given a string and init value, | |||||
ConfigurationTranslator* N = // create a new translator for it | ConfigurationTranslator* N = // create a new translator for it | ||||
new StringTranslator(x, init); // with the values i'm given, | new StringTranslator(x, init); // with the values i'm given, | ||||
myTranslators.push_back(N); // push it onto my list, then | myTranslators.push_back(N); // push it onto my list, then | ||||
void ConfigurationAttribute::initialize() { // Reset all translators to defaults. | void ConfigurationAttribute::initialize() { // Reset all translators to defaults. | ||||
if(0 < myTranslators.size()) { // If we have translators... | if(0 < myTranslators.size()) { // If we have translators... | ||||
list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
std::list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
iTranslator = myTranslators.begin(); // Start at the beginning and | iTranslator = myTranslators.begin(); // Start at the beginning and | ||||
while(iTranslator != myTranslators.end()) { // loop through the whole list. | while(iTranslator != myTranslators.end()) { // loop through the whole list. | ||||
(*iTranslator)->initialize(); // initialize each translator | (*iTranslator)->initialize(); // initialize each translator | ||||
// Read our data. | // Read our data. | ||||
int BfrSize = Stopdex - Startdex +1; // How big a buffer do we need? | int BfrSize = Stopdex - Startdex +1; // How big a buffer do we need? | ||||
vector<char> heapBfr(BfrSize,0); // Make one that size. | |||||
std::vector<char> heapBfr(BfrSize,0); // Make one that size. | |||||
char* Bfr = &heapBfr[0]; | char* Bfr = &heapBfr[0]; | ||||
NewLines += copyDataCountLines(Bfr, Data, Startdex, Stopdex); // Get our data and count our lines. | NewLines += copyDataCountLines(Bfr, Data, Startdex, Stopdex); // Get our data and count our lines. | ||||
// Translate our data by Mnemonic | // Translate our data by Mnemonic | ||||
if(0 < myMnemonics.size()) { // If we have mnemonics... | if(0 < myMnemonics.size()) { // If we have mnemonics... | ||||
list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
std::list<ConfigurationMnemonic*>::iterator iMnemonic; // Iterate through our mnemonics list. | |||||
iMnemonic = myMnemonics.begin(); // Start at the beginning and | iMnemonic = myMnemonics.begin(); // Start at the beginning and | ||||
while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | while(iMnemonic != myMnemonics.end()) { // loop through the whole list. | ||||
if(true == ((*iMnemonic)->test(TranslationData))){ // Check to see if the mnemonic matches. | if(true == ((*iMnemonic)->test(TranslationData))){ // Check to see if the mnemonic matches. | ||||
// Put our TranslationData through each Translator. | // Put our TranslationData through each Translator. | ||||
if(0 < myTranslators.size()) { // We'd better have translators! | if(0 < myTranslators.size()) { // We'd better have translators! | ||||
list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
std::list<ConfigurationTranslator*>::iterator iTranslator; // Iterate through our translators list. | |||||
iTranslator = myTranslators.begin(); // Start at the beginning and | iTranslator = myTranslators.begin(); // Start at the beginning and | ||||
while(iTranslator != myTranslators.end()) { // loop through the whole list. | while(iTranslator != myTranslators.end()) { // loop through the whole list. | ||||
(*iTranslator)->translate(TranslationData); // Pass the data to each one and | (*iTranslator)->translate(TranslationData); // Pass the data to each one and | ||||
myIndex(0), // Our Index is zero | myIndex(0), // Our Index is zero | ||||
myLine(1) { // We start on line 1 | myLine(1) { // We start on line 1 | ||||
try { // Capture any throws. | try { // Capture any throws. | ||||
ifstream CFGFile(FileName); // Open the file. | |||||
CFGFile.seekg(0,ios::end); // Seek to the end | |||||
std::ifstream CFGFile(FileName); // Open the file. | |||||
CFGFile.seekg(0,std::ios::end); // Seek to the end | |||||
myBufferSize = CFGFile.tellg(); // to find out what size it is. | myBufferSize = CFGFile.tellg(); // to find out what size it is. | ||||
myDataBuffer = newCStringBuffer(myBufferSize); // Make a new buffer the right size. | myDataBuffer = newCStringBuffer(myBufferSize); // Make a new buffer the right size. | ||||
CFGFile.seekg(0,ios::beg); // Seek to the beginning and | |||||
CFGFile.seekg(0,std::ios::beg); // Seek to the beginning and | |||||
CFGFile.read(myDataBuffer, myBufferSize); // read the file into the buffer. | CFGFile.read(myDataBuffer, myBufferSize); // read the file into the buffer. | ||||
if(CFGFile.bad()) { // If the read failed, we're unusable! | if(CFGFile.bad()) { // If the read failed, we're unusable! | ||||
delete[] myDataBuffer; // Delete the buffer | delete[] myDataBuffer; // Delete the buffer | ||||
} // indicating there is no Data. | } // indicating there is no Data. | ||||
} | } | ||||
ConfigurationData::ConfigurationData(const string FileName) : // Raw constructor from file. | |||||
ConfigurationData::ConfigurationData(const std::string FileName) : // Raw constructor from file. | |||||
myDataBuffer(NULL), // No data buffer yet. | myDataBuffer(NULL), // No data buffer yet. | ||||
myBufferSize(0), // No length yet. | myBufferSize(0), // No length yet. | ||||
myIndex(0), // Our Index is zero | myIndex(0), // Our Index is zero | ||||
myLine(1) { // We start on line 1 | myLine(1) { // We start on line 1 | ||||
try { // Capture any throws. | try { // Capture any throws. | ||||
ifstream CFGFile(FileName.c_str()); // Open the file. | |||||
CFGFile.seekg(0,ios::end); // Seek to the end | |||||
std::ifstream CFGFile(FileName.c_str()); // Open the file. | |||||
CFGFile.seekg(0,std::ios::end); // Seek to the end | |||||
myBufferSize = CFGFile.tellg(); // to find out what size it is. | myBufferSize = CFGFile.tellg(); // to find out what size it is. | ||||
myDataBuffer = newCStringBuffer(myBufferSize); // Make a new buffer the right size. | myDataBuffer = newCStringBuffer(myBufferSize); // Make a new buffer the right size. | ||||
CFGFile.seekg(0,ios::beg); // Seek to the beginning and | |||||
CFGFile.seekg(0,std::ios::beg); // Seek to the beginning and | |||||
CFGFile.read(myDataBuffer, myBufferSize); // read the file into the buffer. | CFGFile.read(myDataBuffer, myBufferSize); // read the file into the buffer. | ||||
if(CFGFile.bad()) { // If the read failed, we're unusable! | if(CFGFile.bad()) { // If the read failed, we're unusable! | ||||
delete[] myDataBuffer; // Delete the buffer | delete[] myDataBuffer; // Delete the buffer | ||||
} // true. | } // true. | ||||
} | } | ||||
} // End namespace codedweller |
// configuration.hpp | // configuration.hpp | ||||
// | // | ||||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||||
// See http://www.codedweller.com for details. | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// What about this ============================================================= | // What about this ============================================================= | ||||
// The configuration module provides a platform for reading configuration files | // The configuration module provides a platform for reading configuration files | ||||
// (or string data) containing well-formed xml and mapping that data to program | // (or string data) containing well-formed xml and mapping that data to program | ||||
// variables. | // variables. | ||||
// | |||||
// The idea is to provide the ability for an object or application to provide | // The idea is to provide the ability for an object or application to provide | ||||
// a modular "configuration" object that models a hierarchical collection of | // a modular "configuration" object that models a hierarchical collection of | ||||
// "settings" that can be represented easily in code and in xml. | // "settings" that can be represented easily in code and in xml. | ||||
// Include This Header Once Only =============================================== | // Include This Header Once Only =============================================== | ||||
#ifndef configuration_included | |||||
#define configuration_included | |||||
#pragma once | |||||
#include <string> | #include <string> | ||||
#include <vector> | #include <vector> | ||||
#include <cstdlib> | #include <cstdlib> | ||||
#include <list> | #include <list> | ||||
using namespace std; | |||||
namespace codedweller { | |||||
class ConfigurationElement; // Elements exist | class ConfigurationElement; // Elements exist | ||||
class ConfigurationAttribute; // Attributes exist | class ConfigurationAttribute; // Attributes exist | ||||
private: | private: | ||||
string myName; // Elements have a name. | |||||
std::string myName; // Elements have a name. | |||||
// External important things I remember but don't touch... | // External important things I remember but don't touch... | ||||
ConfigurationElement* myParent; // They may have a parrent. | ConfigurationElement* myParent; // They may have a parrent. | ||||
list<Configurator*> myStartConfigurators; // Call these when we start Interpret() | |||||
list<Configurator*> myEndConfigurators; // Call these when we finish Interpret() | |||||
std::list<Configurator*> myStartConfigurators; // Call these when we start Interpret() | |||||
std::list<Configurator*> myEndConfigurators; // Call these when we finish Interpret() | |||||
// Internal / subordinate things I own and kill... | // Internal / subordinate things I own and kill... | ||||
list<ConfigurationAttribute*> myAttributes; // They may have a list of attributes. | |||||
list<ConfigurationElement*> myElements; // They may have a list of sub-elements. | |||||
list<ConfigurationMnemonic*> myMnemonics; // They may have a list of mnemonics. | |||||
list<ConfigurationTranslator*> myTranslators; // They may have a list of translators. | |||||
std::list<ConfigurationAttribute*> myAttributes; // They may have a list of attributes. | |||||
std::list<ConfigurationElement*> myElements; // They may have a list of sub-elements. | |||||
std::list<ConfigurationMnemonic*> myMnemonics; // They may have a list of mnemonics. | |||||
std::list<ConfigurationTranslator*> myTranslators; // They may have a list of translators. | |||||
// During Interpret() operations we keep track of where we are seen... | // During Interpret() operations we keep track of where we are seen... | ||||
public: | public: | ||||
ConfigurationElement(const char* Name); // Must be constructed with a name | ConfigurationElement(const char* Name); // Must be constructed with a name | ||||
ConfigurationElement(const string Name); // either c string or c++ string. | |||||
ConfigurationElement(const std::string Name); // either c string or c++ string. | |||||
ConfigurationElement(const char* Name, ConfigurationElement& Parent); // Sub-elements are constructed with a | ConfigurationElement(const char* Name, ConfigurationElement& Parent); // Sub-elements are constructed with a | ||||
ConfigurationElement(const string Name, ConfigurationElement& Parent); // parrent. | |||||
ConfigurationElement(const std::string Name, ConfigurationElement& Parent); // parrent. | |||||
// Upon desctruction an element will delete all subordinate objects: | // Upon desctruction an element will delete all subordinate objects: | ||||
// * All sub element objects. | // * All sub element objects. | ||||
// Elements can be probed for some simple, useful things. | // Elements can be probed for some simple, useful things. | ||||
string Name(); // Get the name of this element. | |||||
std::string Name(); // Get the name of this element. | |||||
ConfigurationElement& Parent(); // Get the parent of this element. | ConfigurationElement& Parent(); // Get the parent of this element. | ||||
ConfigurationElement& Parent(ConfigurationElement& newParent); // Set the parent of this element. | ConfigurationElement& Parent(ConfigurationElement& newParent); // Set the parent of this element. | ||||
// Elements can contain either data or sub-elements. | // Elements can contain either data or sub-elements. | ||||
ConfigurationElement& Element(const char* Name); // Add a new sub element by c string name. | ConfigurationElement& Element(const char* Name); // Add a new sub element by c string name. | ||||
ConfigurationElement& Element(const string Name); // Add a new sub element by c++ string name. | |||||
ConfigurationElement& Element(const std::string Name); // Add a new sub element by c++ string name. | |||||
//// Mapping element factory methods for convenience. | //// Mapping element factory methods for convenience. | ||||
//// Root-Node elements are _usually_ empty and without attributes in xml | //// Root-Node elements are _usually_ empty and without attributes in xml | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
string& x, string init = string("")); // Map to a string. | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
// string versions | // string versions | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
string& x, string init = string("")); // Map to a string. | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init = 0, int radix = 0); // Map to an int. | int& x, int init = 0, int radix = 0); // Map to an int. | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init = 0.0); // Map to a double. | double& x, double init = 0.0); // Map to a double. | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init = false); // Map to a boolean. | bool& x, bool init = false); // Map to a boolean. | ||||
// End methods for heading back up the tree at the end of an element. | // End methods for heading back up the tree at the end of an element. | ||||
ConfigurationElement& End(); // Return this element's parent. | ConfigurationElement& End(); // Return this element's parent. | ||||
ConfigurationElement& End(const char* Name); // Check the name and return the parent | ConfigurationElement& End(const char* Name); // Check the name and return the parent | ||||
ConfigurationElement& End(const string Name); // if the name is correct - or throw! | |||||
ConfigurationElement& End(const std::string Name); // if the name is correct - or throw! | |||||
// Elements can have attributes. | // Elements can have attributes. | ||||
ConfigurationAttribute& Attribute(const char* Name); // Add an attribute using a cstring. | ConfigurationAttribute& Attribute(const char* Name); // Add an attribute using a cstring. | ||||
ConfigurationAttribute& Attribute(const string Name); // Add an attribute using a c++ string. | |||||
ConfigurationAttribute& Attribute(const std::string Name); // Add an attribute using a c++ string. | |||||
//// Mapping Attribute factory methods for convenience. | //// Mapping Attribute factory methods for convenience. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
string& x, string init = string("")); // Map to a string. | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
// string versions | // string versions | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
string& x, string init = string("")); // Map to a string. | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init = 0, int radix = 0); // Map to an int. | int& x, int init = 0, int radix = 0); // Map to an int. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init = 0.0); // Map to a double. | double& x, double init = 0.0); // Map to a double. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init = false); // Map to a boolean. | bool& x, bool init = false); // Map to a boolean. | ||||
// Elements can Initialize() at each Interpret() call. | // Elements can Initialize() at each Interpret() call. | ||||
// converts it into the expected type, and sets one or more variables | // converts it into the expected type, and sets one or more variables | ||||
// to the converted value. Usually - just one variable. | // to the converted value. Usually - just one variable. | ||||
ConfigurationElement& mapTo(ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||||
ConfigurationElement& mapTo(string& x, string init = string("")); // Map to a string. | |||||
ConfigurationElement& mapTo(int& x, int init = 0, int radix = 0); // Map to an int. | |||||
ConfigurationElement& mapTo(double& x, double init = 0.0); // Map to a double. | |||||
ConfigurationElement& mapTo(bool& x, bool init = false); // Map to a boolean. | |||||
ConfigurationElement& mapTo(ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||||
ConfigurationElement& mapTo(std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationElement& mapTo(int& x, int init = 0, int radix = 0); // Map to an int. | |||||
ConfigurationElement& mapTo(double& x, double init = 0.0); // Map to a double. | |||||
ConfigurationElement& mapTo(bool& x, bool init = false); // Map to a boolean. | |||||
// An Element's contents may use some special mnemonics to make a | // An Element's contents may use some special mnemonics to make a | ||||
// configuration easier to understand and less error prone. When the | // configuration easier to understand and less error prone. When the | ||||
// contents match a mnemnoic then the translation of the mnemonic is | // contents match a mnemnoic then the translation of the mnemonic is | ||||
// passed to the Translators instead of the raw contents. | // passed to the Translators instead of the raw contents. | ||||
ConfigurationElement& Mnemonic(const char* name, const char* value); // Add a mnemonic using c strings. | |||||
ConfigurationElement& Mnemonic(const char* name, const string value); // Add a mnemonic using c & c++ strings. | |||||
ConfigurationElement& Mnemonic(const string name, const char* value); // Add a mnemonic using c++ & c strings. | |||||
ConfigurationElement& Mnemonic(const string name, const string value); // Add a mnemonic using c++ strings. | |||||
ConfigurationElement& Mnemonic(const char* name, const char* value); // Add a mnemonic using c strings. | |||||
ConfigurationElement& Mnemonic(const char* name, const std::string value); // Add a mnemonic using c & c++ strings. | |||||
ConfigurationElement& Mnemonic(const std::string name, const char* value); // Add a mnemonic using c++ & c strings. | |||||
ConfigurationElement& Mnemonic(const std::string name, const std::string value); // Add a mnemonic using c++ strings. | |||||
// The way data gets into an element tree is that it is Interpret()ed | // The way data gets into an element tree is that it is Interpret()ed | ||||
// recursively. The data is loaded into a ConfigurationData object which | // recursively. The data is loaded into a ConfigurationData object which | ||||
private: | private: | ||||
string myName; // Elements have a name. | |||||
std::string myName; // Elements have a name. | |||||
ConfigurationElement& myParent; // They may have a parrent. | ConfigurationElement& myParent; // They may have a parrent. | ||||
list<ConfigurationMnemonic*> myMnemonics; // They may have a list of mnemonics. | |||||
list<ConfigurationTranslator*> myTranslators; // They may have a list of translators. | |||||
std::list<ConfigurationMnemonic*> myMnemonics; // They may have a list of mnemonics. | |||||
std::list<ConfigurationTranslator*> myTranslators; // They may have a list of translators. | |||||
int myLine; // Last line number I was seen on. | int myLine; // Last line number I was seen on. | ||||
int myIndex; // Last char position I was seen on. | int myIndex; // Last char position I was seen on. | ||||
public: | public: | ||||
ConfigurationAttribute(const char* Name, ConfigurationElement& Parent); // Sub-elements are constructed with a | |||||
ConfigurationAttribute(const string Name, ConfigurationElement& Parent); // parrent. | |||||
ConfigurationAttribute(const char* Name, ConfigurationElement& Parent); // Sub-elements are constructed with a | |||||
ConfigurationAttribute(const std::string Name, ConfigurationElement& Parent); // parrent. | |||||
// Attributes delete their Mnemonics and Translators when they go. | // Attributes delete their Mnemonics and Translators when they go. | ||||
// See Elements for similar warnings about objects provided to | // See Elements for similar warnings about objects provided to | ||||
// Attributes can be probed for some simple, useful things. | // Attributes can be probed for some simple, useful things. | ||||
string Name(); // Get the name of this attribute. | |||||
std::string Name(); // Get the name of this attribute. | |||||
ConfigurationElement& Parent(); // Get the parent of this attribute. | ConfigurationElement& Parent(); // Get the parent of this attribute. | ||||
int Line(); // Get the last line number. | int Line(); // Get the last line number. | ||||
int Index(); // Get the last data position. | int Index(); // Get the last data position. | ||||
//// For switching back to the parent element and adding new sub-elements. | //// For switching back to the parent element and adding new sub-elements. | ||||
ConfigurationElement& Element(const char* Name); // Add a new sub element by c string name. | ConfigurationElement& Element(const char* Name); // Add a new sub element by c string name. | ||||
ConfigurationElement& Element(const string Name); // Add a new sub element by c++ string name. | |||||
ConfigurationElement& Element(const std::string Name); // Add a new sub element by c++ string name. | |||||
//// Mapping element factory methods for convenience. | //// Mapping element factory methods for convenience. | ||||
//// Root-Node elements are _usually_ empty and without attributes in xml | //// Root-Node elements are _usually_ empty and without attributes in xml | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
string& x, string init = string("")); // Map to a string. | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
// string versions | // string versions | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
string& x, string init = string("")); // Map to a string. | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init = 0, int radix = 0); // Map to an int. | int& x, int init = 0, int radix = 0); // Map to an int. | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init = 0.0); // Map to a double. | double& x, double init = 0.0); // Map to a double. | ||||
ConfigurationElement& Element( // Mapping factory for convenience, | ConfigurationElement& Element( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init = false); // Map to a boolean. | bool& x, bool init = false); // Map to a boolean. | ||||
// End methods for heading back up the tree at the end of an element. | // End methods for heading back up the tree at the end of an element. | ||||
ConfigurationElement& End(); // Return this element's parent. | ConfigurationElement& End(); // Return this element's parent. | ||||
ConfigurationElement& End(const char* Name); // Check the name and return the parent | ConfigurationElement& End(const char* Name); // Check the name and return the parent | ||||
ConfigurationElement& End(const string Name); // if the name is correct - or throw! | |||||
ConfigurationElement& End(const std::string Name); // if the name is correct - or throw! | |||||
//// For adding new attributes to the parent element. | //// For adding new attributes to the parent element. | ||||
ConfigurationAttribute& Attribute(const char* Name); // Add an attribute using a cstring. | ConfigurationAttribute& Attribute(const char* Name); // Add an attribute using a cstring. | ||||
ConfigurationAttribute& Attribute(const string Name); // Add an attribute using a c++ string. | |||||
ConfigurationAttribute& Attribute(const std::string Name); // Add an attribute using a c++ string. | |||||
//// Mapping Attribute factory methods for convenience. | //// Mapping Attribute factory methods for convenience. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
string& x, string init = string("")); // Map to a string. | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const char* Name, // requires a name, of course, | const char* Name, // requires a name, of course, | ||||
// string versions | // string versions | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ConfigurationTranslator& newTranslator); // Add a Translator to this element. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
string& x, string init = string("")); // Map to a string. | |||||
const std::string Name, // requires a name, of course, | |||||
std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
int& x, int init = 0, int radix = 0); // Map to an int. | int& x, int init = 0, int radix = 0); // Map to an int. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
double& x, double init = 0.0); // Map to a double. | double& x, double init = 0.0); // Map to a double. | ||||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ConfigurationAttribute& Attribute( // Mapping factory for convenience, | ||||
const string Name, // requires a name, of course, | |||||
const std::string Name, // requires a name, of course, | |||||
bool& x, bool init = false); // Map to a boolean. | bool& x, bool init = false); // Map to a boolean. | ||||
//// Set Init On Interprete for the parent element. | //// Set Init On Interprete for the parent element. | ||||
// apply to the parent element's contents. Here they are for use on this | // apply to the parent element's contents. Here they are for use on this | ||||
// attribute. | // attribute. | ||||
ConfigurationAttribute& mapTo(ConfigurationTranslator& newTranslator); // Add a Translator to this attribute. | |||||
ConfigurationAttribute& mapTo(string& x, string init = string("")); // Map to a string. | |||||
ConfigurationAttribute& mapTo(int& x, int init, int radix = 0); // Map to an int. | |||||
ConfigurationAttribute& mapTo(double& x, double init = 0.0); // Map to a double. | |||||
ConfigurationAttribute& mapTo(bool& x, bool init = false); // Map to a boolean. | |||||
ConfigurationAttribute& mapTo(ConfigurationTranslator& newTranslator); // Add a Translator to this attribute. | |||||
ConfigurationAttribute& mapTo(std::string& x, std::string init = std::string("")); // Map to a string. | |||||
ConfigurationAttribute& mapTo(int& x, int init, int radix = 0); // Map to an int. | |||||
ConfigurationAttribute& mapTo(double& x, double init = 0.0); // Map to a double. | |||||
ConfigurationAttribute& mapTo(bool& x, bool init = false); // Map to a boolean. | |||||
// Attributes can have mnemonics just like elements. | // Attributes can have mnemonics just like elements. | ||||
ConfigurationAttribute& Mnemonic(const char* name, const char* value); // Add a mnemonic using a c string. | |||||
ConfigurationAttribute& Mnemonic(const char* name, const string value); // Add a mnemonic using c & c++ strings. | |||||
ConfigurationAttribute& Mnemonic(const string name, const char* value); // Add a mnemonic using c++ & c strings. | |||||
ConfigurationAttribute& Mnemonic(const string name, const string value); // Add a mnemonic using a c++ string. | |||||
ConfigurationAttribute& Mnemonic(const char* name, const char* value); // Add a mnemonic using a c string. | |||||
ConfigurationAttribute& Mnemonic(const char* name, const std::string value); // Add a mnemonic using c & c++ strings. | |||||
ConfigurationAttribute& Mnemonic(const std::string name, const char* value); // Add a mnemonic using c++ & c strings. | |||||
ConfigurationAttribute& Mnemonic(const std::string name, const std::string value); // Add a mnemonic using a c++ string. | |||||
// Attributes participate in the Interprete() task just like elements. | // Attributes participate in the Interprete() task just like elements. | ||||
public: | public: | ||||
ConfigurationData(const char* FileName); // Constructor from c string file name. | ConfigurationData(const char* FileName); // Constructor from c string file name. | ||||
ConfigurationData(const string FileName); // Constructor from c++ string file name. | |||||
ConfigurationData(const std::string FileName); // Constructor from c++ string file name. | |||||
ConfigurationData(const char* Data, int Length); // Raw constructor from text buffer. | ConfigurationData(const char* Data, int Length); // Raw constructor from text buffer. | ||||
~ConfigurationData(); // Destroys the internal buffer etc. | ~ConfigurationData(); // Destroys the internal buffer etc. | ||||
int Line(); // Reads the current Line number. | int Line(); // Reads the current Line number. | ||||
int addNewLines(int Count); // Increments the Line number. | int addNewLines(int Count); // Increments the Line number. | ||||
stringstream Log; // Convenient Interpret log. | |||||
std::stringstream Log; // Convenient Interpret log. | |||||
}; | }; | ||||
// collection of the basic translators used for built-in mapTo()s. | // collection of the basic translators used for built-in mapTo()s. | ||||
class ConfigurationTranslator { // Translators exist | class ConfigurationTranslator { // Translators exist | ||||
public: | |||||
public: | |||||
virtual ~ConfigurationTranslator(){}; // Stop No Virt Dtor warnings. | virtual ~ConfigurationTranslator(){}; // Stop No Virt Dtor warnings. | ||||
virtual void translate(const char* Value) = 0; // Pure virtual translator. | virtual void translate(const char* Value) = 0; // Pure virtual translator. | ||||
virtual void initialize() = 0; // Pure virtual initializer. | virtual void initialize() = 0; // Pure virtual initializer. | ||||
class StringTranslator : public ConfigurationTranslator { | class StringTranslator : public ConfigurationTranslator { | ||||
private: | private: | ||||
string& myVariable; // Variable to map. | |||||
string myInitializer; // Initial/Default value. | |||||
std::string& myVariable; // Variable to map. | |||||
std::string myInitializer; // Initial/Default value. | |||||
public: | public: | ||||
StringTranslator( // Construct this with | StringTranslator( // Construct this with | ||||
string& Variable, // the variable to map, | |||||
string Inititializer); // and the default value. | |||||
std::string& Variable, // the variable to map, | |||||
std::string Inititializer); // and the default value. | |||||
void translate(const char* Value); // Provide a translation method. | void translate(const char* Value); // Provide a translation method. | ||||
void initialize(); // Provide an initialization method. | void initialize(); // Provide an initialization method. | ||||
class ConfigurationMnemonic { // Mnemonics | class ConfigurationMnemonic { // Mnemonics | ||||
private: | private: | ||||
string myName; // What is the Mnemonic? | |||||
string myValue; // What is the translation? | |||||
std::string myName; // What is the Mnemonic? | |||||
std::string myValue; // What is the translation? | |||||
public: | public: | ||||
ConfigurationMnemonic(string Name, string Value); // To make one, provide both parts. | |||||
bool test(string Name); // Test to see if this Mnemonic matches. | |||||
string Value(); // If it does then we will need it's value. | |||||
ConfigurationMnemonic(std::string Name, std::string Value); // To make one, provide both parts. | |||||
bool test(std::string Name); // Test to see if this Mnemonic matches. | |||||
std::string Value(); // If it does then we will need it's value. | |||||
}; | }; | ||||
//// Configurator ////////////////////////////////////////////////////////////// | //// Configurator ////////////////////////////////////////////////////////////// | ||||
class Configurator { // Configurators exist | class Configurator { // Configurators exist | ||||
public: | public: | ||||
virtual void operator()(ConfigurationElement& E, ConfigurationData& D) = 0; // Pure virtual configurator. | |||||
virtual void operator()(ConfigurationElement& E, ConfigurationData& D) = 0; // Pure virtual configurator. | |||||
virtual ~Configurator() {} // Virtual dtor keeps warnings away. | virtual ~Configurator() {} // Virtual dtor keeps warnings away. | ||||
}; | }; | ||||
//// Include our inline methods //////////////////////////////////////////////// | |||||
#include "configuration.inline.hpp" | |||||
//// Utilities ///////////////////////////////////////////////////////////////// | //// Utilities ///////////////////////////////////////////////////////////////// | ||||
// SetTrueOnComplete Configurator ////////////////////////////////////////////// | // SetTrueOnComplete Configurator ////////////////////////////////////////////// | ||||
void operator()(ConfigurationElement& E, ConfigurationData& D); // Handle the operation. | void operator()(ConfigurationElement& E, ConfigurationData& D); // Handle the operation. | ||||
}; | }; | ||||
#endif | |||||
// End Of Include Only Once | |||||
} // End namespace codedweller |
// configuration.inline.hpp | |||||
// | |||||
// (C) 2006-2009 MicroNeil Research Corporation. | |||||
// | |||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// See configuration.hpp for details | |||||
//// Configuration Element ///////////////////////////////////////////////////// | |||||
inline ConfigurationElement::ConfigurationElement(const char* Name) : // Construct with a cstring. | |||||
myName(string(Name)), | |||||
myParent(NULL), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
inline ConfigurationElement::ConfigurationElement(const string Name) : // Construct with a c++ string. | |||||
myName(Name), | |||||
myParent(NULL), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
inline ConfigurationElement::ConfigurationElement( // Construct sub element w/ cstring. | |||||
const char* Name, | |||||
ConfigurationElement& Parent) : | |||||
myName(string(Name)), | |||||
myParent(&Parent), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
inline ConfigurationElement::ConfigurationElement( // Construct sub element w/ string. | |||||
const string Name, | |||||
ConfigurationElement& Parent) : | |||||
myName(Name), | |||||
myParent(&Parent), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0), | |||||
myCleanFlag(true), | |||||
myInitOnInterpretFlag(false) { | |||||
} | |||||
inline string ConfigurationElement::Name() { return myName; } // Get the name of this element. | |||||
inline ConfigurationElement& ConfigurationElement::Parent() { // Get the parrent of this element. | |||||
if(NULL != myParent) { // If I have a parent | |||||
return (*myParent); // then I dereference and return it. | |||||
} // If I don't have a parent | |||||
return (*this); // then I return myself. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Parent( // Set the parrent of this element. | |||||
ConfigurationElement& Parent) { // Given this parent | |||||
myParent = &Parent; // I take and store it's address | |||||
return (*myParent); // then dereference and return it. | |||||
} | |||||
inline int ConfigurationElement::Line() { return myLine; } // Get the last line number. | |||||
inline int ConfigurationElement::Index() { return myIndex; } // Get the last data position. | |||||
inline int ConfigurationElement::Length() { return myLength; } // Get the last length. | |||||
inline void ConfigurationElement::notifyDirty() { myCleanFlag = false; } // Attributes do this when they change. | |||||
inline ConfigurationElement& ConfigurationElement::Element(const char* Name) { // Add a new sub element by c string name. | |||||
return Element(string(Name)); // Use the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Element(const string Name) { // Add a new sub element by c++ string name. | |||||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | |||||
Name, // name provided and | |||||
(*this)); // myself as the parent. | |||||
myElements.push_back(N); // Add it to the list. | |||||
return (*N); // Return the new element. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return Element(string(Name), newTranslator); // Use the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
return Element(string(Name), x, init); // Use the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return Element(string(Name), x, init, radix); // Use the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return Element(string(Name), x, init); // Use the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return Element(string(Name), x, init); // Use the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::End() { // Return this element's parent. | |||||
return Parent(); // Borrow Parent() | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::End(const char* Name) { // Check the name and return the parent | |||||
return End(string(Name)); // Borrow End(string) | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::End(const string Name) { // if the name is correct - or throw! | |||||
if(0 != Name.compare(myName)) { // If Name is not myName | |||||
throw EndNameDoesNotMatch(); // throw an exception! | |||||
} // If the names match then | |||||
return Parent(); // return the parent. | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Add an attribute using a cstring. | |||||
const char* Name) { // Given this cstring name | |||||
return Attribute(string(Name)); // Convert it to a string and borrow | |||||
} // Attribute(string) | |||||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return Attribute(string(Name), newTranslator); // Borrow the string name version | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
return Attribute(string(Name), x, init); // Borrow the string name version | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return Attribute(string(Name), x, init); // Borrow the string name version | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return Attribute(string(Name), x, init); // Borrow the string name version | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return Attribute(string(Name), x, init); // Borrow the string name version | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::setInitOnInterpret() { // Set the init on interpret flag. | |||||
myInitOnInterpretFlag = true; // Set the flag. | |||||
return(*this); // Dereference and return self. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::atStartCall( // Add an atStart call-back. | |||||
Configurator& Functor) { // Given this Functor, | |||||
myStartConfigurators.push_back(&Functor); // add it to my atStart list then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::atEndCall( // Add an atEnd call-back. | |||||
Configurator& Functor) { // Given this Functor, | |||||
myEndConfigurators.push_back(&Functor); // add it to my atEnd list then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c strings. | |||||
const char* name, const char* value) { // Given char* and char* | |||||
return Mnemonic(string(name), string(value)); // make strings and borrow that method. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const char* name, const string value) { // Given char* and string | |||||
return Mnemonic(string(name), value); // make strings and borrow that method. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const string name, const char* value) { // Given string and char* | |||||
return Mnemonic(name, string(value)); // make strings and borrow that method. | |||||
} | |||||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c++ strings. | |||||
const string name, const string value) { // Givent string and string | |||||
ConfigurationMnemonic* N = // Create a new Mnemonic | |||||
new ConfigurationMnemonic(name, value); // using the values provided, | |||||
myMnemonics.push_back(N); // add it to my list, then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
//// Configuration Attribute /////////////////////////////////////////////////// | |||||
inline ConfigurationAttribute::ConfigurationAttribute( // Attributes are constructed with a | |||||
const char* Name, ConfigurationElement& Parent) : // Name and a Parent. | |||||
myName(string(Name)), // We convert the name to a string. | |||||
myParent(Parent), // We just grab the parent. | |||||
myLine(0), // Everything else gets zeroed. | |||||
myIndex(0), | |||||
myLength(0) { | |||||
} | |||||
inline ConfigurationAttribute::ConfigurationAttribute( // Attributes are constrictued with a | |||||
const string Name, ConfigurationElement& Parent) : // Name and a Parent. | |||||
myName(Name), // We grab them and zero the rest. | |||||
myParent(Parent), | |||||
myLine(0), | |||||
myIndex(0), | |||||
myLength(0) { | |||||
} | |||||
inline string ConfigurationAttribute::Name() { // Get the name of this attribute. | |||||
return myName; | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Parent() { // Get the parent of this attribute. | |||||
return myParent; | |||||
} | |||||
inline int ConfigurationAttribute::Line() { // Get the last line number. | |||||
return myLine; | |||||
} | |||||
inline int ConfigurationAttribute::Index() { // Get the last data position. | |||||
return myIndex; | |||||
} | |||||
inline int ConfigurationAttribute::Length() { // Get the last length. | |||||
return myLength; | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c string name. | |||||
const char* Name) { | |||||
return myParent.Element(Name); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c++ string name. | |||||
const string Name) { | |||||
return myParent.Element(Name); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Element(Name, newTranslator); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Element(Name, x, init, radix); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Element(Name, newTranslator); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Element(Name, x, init, radix); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Element(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::End() { // Return this element's parent. | |||||
return myParent.End(); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::End(const char* Name) { // Check the name and return the parent | |||||
return myParent.End(Name); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::End(const string Name) { // if the name is correct - or throw! | |||||
return myParent.End(Name); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a cstring. | |||||
const char* Name) { | |||||
return myParent.Attribute(Name); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a c++ string. | |||||
const string Name) { | |||||
return myParent.Attribute(Name); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Attribute(Name, newTranslator); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Attribute(Name, x, init, radix); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const char* Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||||
return myParent.Attribute(Name, newTranslator); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
string& x, string init) { // Map to a string. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
int& x, int init, int radix) { // Map to an int. | |||||
return myParent.Attribute(Name, x, init, radix); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
double& x, double init) { // Map to a double. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||||
const string Name, // requires a name, of course, | |||||
bool& x, bool init) { // Map to a boolean. | |||||
return myParent.Attribute(Name, x, init); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::setInitOnInterpret() { // Set the init on interpret flag. | |||||
return myParent.setInitOnInterpret(); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::atStartCall( // Add an atStart call-back to this element. | |||||
Configurator& Functor) { | |||||
return myParent.atStartCall(Functor); | |||||
} | |||||
inline ConfigurationElement& ConfigurationAttribute::atEndCall( // Add an atEnd call-back to this element. | |||||
Configurator& Functor) { | |||||
return myParent.atEndCall(Functor); | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c strings. | |||||
const char* name, const char* value) { // Given char* and char* | |||||
return Mnemonic(string(name), string(value)); // make strings and borrow that method. | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const char* name, const string value) { // Given char* and string | |||||
return Mnemonic(string(name), value); // make strings and borrow that method. | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. | |||||
const string name, const char* value) { // Given string and char* | |||||
return Mnemonic(name, string(value)); // make strings and borrow that method. | |||||
} | |||||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c++ strings. | |||||
const string name, const string value) { // Givent string and string | |||||
ConfigurationMnemonic* N = // Create a new Mnemonic | |||||
new ConfigurationMnemonic(name, value); // using the values provided, | |||||
myMnemonics.push_back(N); // add it to my list, then | |||||
return(*this); // dereference and return myself. | |||||
} | |||||
//// Configuration Data //////////////////////////////////////////////////////// | |||||
inline char ConfigurationData::Data(int Index) { // Returns char from Data[Index] | |||||
if(0 > Index || Index >= myBufferSize) { // Check that index is in range | |||||
return 0; // and return 0 if it is not. | |||||
} // If Index is within range then | |||||
return myDataBuffer[Index]; // return the byte requested. | |||||
} | |||||
inline int ConfigurationData::Index() { // Reads the current Index. | |||||
return myIndex; | |||||
} | |||||
inline int ConfigurationData::Index(int i) { // Changes the current Index. | |||||
if(0 > i || i >= myBufferSize) { // If i is out of range then | |||||
return myIndex; // return the current Index unchanged. | |||||
} // If i is within range then | |||||
myIndex = i; // change the Index to i and | |||||
return myIndex; // return the changed Index. | |||||
} | |||||
inline int ConfigurationData::Line() { // Reads the current Line number. | |||||
return myLine; | |||||
} | |||||
inline int ConfigurationData::addNewLines(int Count) { // Increments the Line number. | |||||
myLine += Count; // Add the number of new lines. | |||||
return myLine; // Return the current Line number. | |||||
} | |||||
//// Configuration Translator ////////////////////////////////////////////////// | |||||
inline StringTranslator::StringTranslator( // Construct this with | |||||
string& Variable, // the variable to map, | |||||
string Initializer) : // and the default value. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer) { | |||||
} | |||||
inline void StringTranslator::translate(const char* Value) { // Provide a translation method. | |||||
myVariable = string(Value); // String to String = simple copy. | |||||
} | |||||
inline void StringTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
inline IntegerTranslator::IntegerTranslator( // Construct this with | |||||
int& Variable, // the variable to map, | |||||
int Initializer, // and the default value. | |||||
int Radix) : // For this one we also need a Radix. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer), | |||||
myRadix(Radix) { | |||||
} | |||||
inline void IntegerTranslator::translate(const char* Value) { // Provide a translation method. | |||||
char* dummy; // Throw away ptr for strtol(). | |||||
myVariable = strtol(Value, &dummy, myRadix); // Convert the string w/ strtol(). | |||||
} | |||||
inline void IntegerTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
inline DoubleTranslator::DoubleTranslator( // Construct this with | |||||
double& Variable, // the variable to map, | |||||
double Initializer) : // and the default value. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer) { | |||||
} | |||||
inline void DoubleTranslator::translate(const char* Value) { // Provide a translation method. | |||||
char* dummy; // Throw away ptr for strtod(). | |||||
myVariable = strtod(Value, &dummy); // Convert the string w/ strtod(). | |||||
} | |||||
inline void DoubleTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
inline BoolTranslator::BoolTranslator( // Construct this with | |||||
bool& Variable, // the variable to map, | |||||
bool Initializer) : // and the default value. | |||||
myVariable(Variable), | |||||
myInitializer(Initializer) { | |||||
} | |||||
inline void BoolTranslator::translate(const char* Value) { // Provide a translation method. | |||||
if( | |||||
(0 == strcmp(Value,"on")) || | |||||
(0 == strcmp(Value,"true")) || // on, true, yes, and 1 are | |||||
(0 == strcmp(Value, "yes")) || // interpreted as a boolean true. | |||||
(0 == strcmp(Value, "1")) | |||||
) { | |||||
myVariable = true; | |||||
} else { // Anything else is interpreted as | |||||
myVariable = false; // boolean false. | |||||
} | |||||
} | |||||
inline void BoolTranslator::initialize() { // Provide an initialization method. | |||||
myVariable = myInitializer; // Revert to the initializer value. | |||||
} | |||||
//// Configuration Mnemonic //////////////////////////////////////////////////// | |||||
inline ConfigurationMnemonic::ConfigurationMnemonic( // To make one, provide both parts. | |||||
string Name, string Value) : | |||||
myName(Name), | |||||
myValue(Value) { | |||||
} | |||||
inline bool ConfigurationMnemonic::test(string Name) { // Test to see if this Mnemonic matches. | |||||
return (0 == Name.compare(myName)); // Return true if Name and myName match. | |||||
} | |||||
inline string ConfigurationMnemonic::Value() { // If it does then we will need it's value. | |||||
return myValue; | |||||
} |
// faults.hpp | // faults.hpp | ||||
// | // | ||||
// Copyright (C) MicroNeil Research Corporation 2009 | |||||
// This file is part of the CodeDweller library. | |||||
// See www.codedweller.com for details. | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | // | ||||
// Faults and Checks are classes we can use in place of assert() to handle | // Faults and Checks are classes we can use in place of assert() to handle | ||||
// unreasonable or necessary conditions in our code. They are constructed with | // unreasonable or necessary conditions in our code. They are constructed with | ||||
// A Runtime...() throws a runtime_error (self) with it's description in what(). | // A Runtime...() throws a runtime_error (self) with it's description in what(). | ||||
// A Logic...() throws a logic_error (self) with it's description in what(). | // A Logic...() throws a logic_error (self) with it's description in what(). | ||||
#ifndef MNR_faults | |||||
#define MNR_faults | |||||
#pragma once | |||||
#include <stdexcept> | #include <stdexcept> | ||||
#include <cstdlib> | #include <cstdlib> | ||||
#include <iostream> | #include <iostream> | ||||
#include <string> | #include <string> | ||||
using namespace std; | |||||
namespace codedweller { | |||||
const int DefaultExitCode = EXIT_FAILURE; // Use this when no code is provided. | const int DefaultExitCode = EXIT_FAILURE; // Use this when no code is provided. | ||||
private: | private: | ||||
const string myDescription; // This is what I have to say. | |||||
const std::string myDescription; // This is what I have to say. | |||||
public: | public: | ||||
AbortCheck(const string& Text) : myDescription(Text) {} // I am constructed with a description | |||||
AbortCheck(const std::string& Text) : myDescription(Text) {} // I am constructed with a description | |||||
void operator()(bool X) const { // Apply me like assert(exp) | void operator()(bool X) const { // Apply me like assert(exp) | ||||
if(false == X) { // If the expression is false then we | if(false == X) { // If the expression is false then we | ||||
cerr << myDescription << endl; // failed the check so we display our | |||||
std::cerr << myDescription << std::endl; // failed the check so we display our | |||||
abort(); // description and abort. | abort(); // description and abort. | ||||
} | } | ||||
} | } | ||||
const string Description() { return myDescription; } // You can ask for my Description. | |||||
const std::string Description() { return myDescription; } // You can ask for my Description. | |||||
}; | }; | ||||
class AbortFault { // If this fault occurs we will abort. | class AbortFault { // If this fault occurs we will abort. | ||||
private: | private: | ||||
const string myDescription; // This is what I have to say. | |||||
const std::string myDescription; // This is what I have to say. | |||||
public: | public: | ||||
AbortFault(const string& Text) : myDescription(Text) {} // I am constructed with a description | |||||
AbortFault(const std::string& Text) : myDescription(Text) {} // I am constructed with a description | |||||
void operator()(bool X) const { // Apply me like assert(! exp) | void operator()(bool X) const { // Apply me like assert(! exp) | ||||
if(true == X) { // If the expression is true then we | if(true == X) { // If the expression is true then we | ||||
cerr << myDescription << endl; // have a fault so we display our fault | |||||
std::cerr << myDescription << std::endl; // have a fault so we display our fault | |||||
abort(); // description and abort. | abort(); // description and abort. | ||||
} | } | ||||
} | } | ||||
const string Description() const { return myDescription; } // You can ask for my Description. | |||||
const std::string Description() const { return myDescription; } // You can ask for my Description. | |||||
}; | }; | ||||
class ExitCheck { // If this check is false we will exit. | class ExitCheck { // If this check is false we will exit. | ||||
private: | private: | ||||
const string myDescription; // This is what I have to say. | |||||
const std::string myDescription; // This is what I have to say. | |||||
const int myExitCode; // This is what I send to exit(). | const int myExitCode; // This is what I send to exit(). | ||||
public: | public: | ||||
ExitCheck(const string& Text, int Code=DefaultExitCode) : // I am constructed with a description | |||||
ExitCheck(const std::string& Text, int Code=DefaultExitCode) : // I am constructed with a description | |||||
myDescription(Text), myExitCode(Code) {} // and (optionlly) an exit code. | myDescription(Text), myExitCode(Code) {} // and (optionlly) an exit code. | ||||
void operator()(bool X) const { // Apply me like assert(exp) | void operator()(bool X) const { // Apply me like assert(exp) | ||||
if(false == X) { // If the expression is false then we | if(false == X) { // If the expression is false then we | ||||
cerr << myDescription << endl; // failed the check so we display our | |||||
std::cerr << myDescription << std::endl; // failed the check so we display our | |||||
exit(myExitCode); // description and exit with our code. | exit(myExitCode); // description and exit with our code. | ||||
} | } | ||||
} | } | ||||
const string Description() { return myDescription; } // You can ask for my Description. | |||||
const std::string Description() { return myDescription; } // You can ask for my Description. | |||||
const int ExitCode() { return myExitCode; } // You can ask for my ExitCode. | const int ExitCode() { return myExitCode; } // You can ask for my ExitCode. | ||||
}; | }; | ||||
private: | private: | ||||
const string myDescription; // This is what I have to say. | |||||
const std::string myDescription; // This is what I have to say. | |||||
const int myExitCode; // This is what I send to exit(). | const int myExitCode; // This is what I send to exit(). | ||||
public: | public: | ||||
ExitFault(const string& Text, int Code=DefaultExitCode) : // I am constructed with a description | |||||
ExitFault(const std::string& Text, int Code=DefaultExitCode) : // I am constructed with a description | |||||
myDescription(Text), myExitCode(Code) {} // and (optionlly) an exit code. | myDescription(Text), myExitCode(Code) {} // and (optionlly) an exit code. | ||||
void operator()(bool X) const { // Apply me like assert(! exp) | void operator()(bool X) const { // Apply me like assert(! exp) | ||||
if(true == X) { // If the expression is true then we | if(true == X) { // If the expression is true then we | ||||
cerr << myDescription << endl; // have a fault so we display our fault | |||||
std::cerr << myDescription << std::endl; // have a fault so we display our fault | |||||
exit(myExitCode); // description and exit with our code. | exit(myExitCode); // description and exit with our code. | ||||
} | } | ||||
} | } | ||||
const string Description() const { return myDescription; } // You can ask for my Description. | |||||
const std::string Description() const { return myDescription; } // You can ask for my Description. | |||||
const int ExitCode() const { return myExitCode; } // You can ask for my ExitCode. | const int ExitCode() const { return myExitCode; } // You can ask for my ExitCode. | ||||
}; | }; | ||||
class RuntimeCheck : public runtime_error { // Throw if this check fails. | |||||
class RuntimeCheck : public std::runtime_error { // Throw if this check fails. | |||||
public: | public: | ||||
RuntimeCheck(const string& Text) : runtime_error(Text) {} // Construct me with a description. | |||||
RuntimeCheck(const std::string& Text) : std::runtime_error(Text) {} // Construct me with a description. | |||||
void operator()(bool X) const { // Apply me like assert(exp) | void operator()(bool X) const { // Apply me like assert(exp) | ||||
if(false == X) { // If the expression is false then we | if(false == X) { // If the expression is false then we | ||||
} | } | ||||
}; | }; | ||||
class RuntimeFault : public runtime_error { // Throw if we find this fault. | |||||
class RuntimeFault : public std::runtime_error { // Throw if we find this fault. | |||||
public: | public: | ||||
RuntimeFault(const string& Text) : runtime_error(Text) {} // Construct me with a description. | |||||
RuntimeFault(const std::string& Text) : std::runtime_error(Text) {} // Construct me with a description. | |||||
void operator()(bool X) const { // Apply me like assert(exp) | void operator()(bool X) const { // Apply me like assert(exp) | ||||
if(true == X) { // If the expression is true then we | if(true == X) { // If the expression is true then we | ||||
} | } | ||||
}; | }; | ||||
class LogicCheck : public logic_error { // Throw if this check fails. | |||||
class LogicCheck : public std::logic_error { // Throw if this check fails. | |||||
public: | public: | ||||
LogicCheck(const string& Text) : logic_error(Text) {} // Construct me with a description. | |||||
LogicCheck(const std::string& Text) : std::logic_error(Text) {} // Construct me with a description. | |||||
void operator()(bool X) const { // Apply me like assert(exp) | void operator()(bool X) const { // Apply me like assert(exp) | ||||
if(false == X) { // If the expression is false then we | if(false == X) { // If the expression is false then we | ||||
} | } | ||||
}; | }; | ||||
class LogicFault : public logic_error { // Throw if we find this fault. | |||||
class LogicFault : public std::logic_error { // Throw if we find this fault. | |||||
public: | public: | ||||
LogicFault(const string& Text) : logic_error(Text) {} // Construct me with a description. | |||||
LogicFault(const std::string& Text) : std::logic_error(Text) {} // Construct me with a description. | |||||
void operator()(bool X) const { // Apply me like assert(exp) | void operator()(bool X) const { // Apply me like assert(exp) | ||||
if(true == X) { // If the expression is true then we | if(true == X) { // If the expression is true then we | ||||
} | } | ||||
}; | }; | ||||
#endif | |||||
// End Of Include MNR_faults Once Only ========================================= | |||||
} // End namespace codedweller |
// histogram.hpp | // histogram.hpp | ||||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation | |||||
// Class to capture a histogram of events using a <set> | |||||
// | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
#ifndef mn_histogram_included | |||||
#define mn_histogram_included | |||||
#pragma once | |||||
#include <set> | #include <set> | ||||
using namespace std; | |||||
namespace codedweller { | |||||
/** The Histogram class is managed set of HistogramRecords. | /** The Histogram class is managed set of HistogramRecords. | ||||
*** We play some naughty tricks with pointers to break the rules and | *** We play some naughty tricks with pointers to break the rules and | ||||
class HistogramRecord { // A record to assocate a key and count. | class HistogramRecord { // A record to assocate a key and count. | ||||
public: | public: | ||||
int Key; // Here is the key. | int Key; // Here is the key. | ||||
int Count; // Here is the count. | |||||
mutable int Count; // Here is the count. | |||||
HistogramRecord(const int NewKey) : // We must have a key to make one. | HistogramRecord(const int NewKey) : // We must have a key to make one. | ||||
Key(NewKey), Count(0) {} // and a new one starts at count 0. | Key(NewKey), Count(0) {} // and a new one starts at count 0. | ||||
} | } | ||||
}; | }; | ||||
class Histogram : public set<HistogramRecord> { // A Histogram is a set of HistogramRecords | |||||
class Histogram : public std::set<HistogramRecord> { // A Histogram is a set of HistogramRecords | |||||
private: // and a private hit counter... | private: // and a private hit counter... | ||||
int HitCount; | int HitCount; | ||||
public: | public: | ||||
int hit(const int EventKey, const int Adjustment = 1) { // hit() method increments a specific count. | int hit(const int EventKey, const int Adjustment = 1) { // hit() method increments a specific count. | ||||
HistogramRecord E(EventKey); // First, make a record for the event key. | HistogramRecord E(EventKey); // First, make a record for the event key. | ||||
insert(E); // Insert the new record (if it's not there). | insert(E); // Insert the new record (if it's not there). | ||||
set<HistogramRecord>::iterator iE = // Find either the pre-existing or the new | |||||
std::set<HistogramRecord>::iterator iE = // Find either the pre-existing or the new | |||||
find(E); // record for this key. | find(E); // record for this key. | ||||
int* C; // Play naughty pointer games to access | int* C; // Play naughty pointer games to access | ||||
C = const_cast<int*>(&((*iE).Count)); // the Count for this record inside the | C = const_cast<int*>(&((*iE).Count)); // the Count for this record inside the | ||||
} | } | ||||
}; | }; | ||||
#endif | |||||
} // End namespace codedweller | |||||
// MANGLER.CPP | // MANGLER.CPP | ||||
// | // | ||||
// (C) 1984-2009 MicroNeil Research Corporation | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | |||||
// Derived from Version 1 of Mangler Encryption Algorythm, 1984. | // Derived from Version 1 of Mangler Encryption Algorythm, 1984. | ||||
// Derived from Version 2 of Mangler Encryption Algorythm, 1998. | // Derived from Version 2 of Mangler Encryption Algorythm, 1998. | ||||
// | // | ||||
// 20021008 _M | |||||
// Found and corrected range bug in ChaosDriver(void) where | |||||
// ~Position might access a location outside the fill. Replaced | |||||
// ~Position with Position^0xff which has the intended effect. | |||||
// 20020119 _M Version 3.0 | |||||
// | |||||
// Mangler encryption engine object. | // Mangler encryption engine object. | ||||
// Using new optimized chaos driver for uniformity experiments. | // Using new optimized chaos driver for uniformity experiments. | ||||
// Important in this experiment is proof of highest possible entropy. | // Important in this experiment is proof of highest possible entropy. | ||||
#include "mangler.hpp" | #include "mangler.hpp" | ||||
unsigned char MANGLER::ChaosDriver(void) { // Return the current | |||||
namespace codedweller { | |||||
unsigned char Mangler::ChaosDriver(void) { // Return the current | |||||
return Fill[Fill[Position]^Fill[Position^0xff]]; // chaos engine output | return Fill[Fill[Position]^Fill[Position^0xff]]; // chaos engine output | ||||
} // value. | } // value. | ||||
// value of Position and determining the final output value and the Position | // value of Position and determining the final output value and the Position | ||||
// value itself is used to add complexity to the output. | // value itself is used to add complexity to the output. | ||||
unsigned char MANGLER::Rotate(unsigned char i) { // Bitwise rotates i | |||||
unsigned char Mangler::Rotate(unsigned char i) { // Bitwise rotates i | |||||
return ( | return ( | ||||
(i & 0x80)? // This operation is | (i & 0x80)? // This operation is | ||||
(i<<1)+1: // described without | (i<<1)+1: // described without | ||||
); | ); | ||||
} | } | ||||
void MANGLER::ChaosDriver(unsigned char i) { // Drives chaos engine. | |||||
void Mangler::ChaosDriver(unsigned char i) { // Drives chaos engine. | |||||
// First we move our mixing position in the fill buffer forward. | // First we move our mixing position in the fill buffer forward. | ||||
// same state with the same fill data characteristics or else the two | // same state with the same fill data characteristics or else the two | ||||
// chaotic systems evolve to further divergent states. | // chaotic systems evolve to further divergent states. | ||||
unsigned char MANGLER::Encrypt(unsigned char i) { | |||||
unsigned char Mangler::Encrypt(unsigned char i) { | |||||
unsigned char g = ChaosDriver() ^ i; // Take the output of the | unsigned char g = ChaosDriver() ^ i; // Take the output of the | ||||
ChaosDriver(g); // chaos engine and use it | ChaosDriver(g); // chaos engine and use it | ||||
return g; // to moduleate the input. | return g; // to moduleate the input. | ||||
} // Then drive the engine | } // Then drive the engine | ||||
// with the encrypted data. | // with the encrypted data. | ||||
unsigned char MANGLER::Decrypt(unsigned char i) { | |||||
unsigned char Mangler::Decrypt(unsigned char i) { | |||||
unsigned char g = ChaosDriver() ^ i; // Take the output of the | unsigned char g = ChaosDriver() ^ i; // Take the output of the | ||||
ChaosDriver(i); // chaos engine and use it | ChaosDriver(i); // chaos engine and use it | ||||
return g; // to demodulate the input. | return g; // to demodulate the input. | ||||
} // then drive the engine | } // then drive the engine | ||||
// with the original input. | // with the original input. | ||||
MANGLER::MANGLER(void) : Position(0) { // The default constructor sets | |||||
Mangler::Mangler(void) : Position(0) { // The default constructor sets | |||||
for(unsigned int c = 0;c<256;c++) // the key to the root primary | for(unsigned int c = 0;c<256;c++) // the key to the root primary | ||||
Fill[c]=(unsigned char) c; // value and Position to 0. | Fill[c]=(unsigned char) c; // value and Position to 0. | ||||
} | } | ||||
} // End namespace codedweller |
// MANGLER.HPP | // MANGLER.HPP | ||||
// | // | ||||
// (C) 1984-2009 MicroNeil Research Corporation | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | |||||
// Derived from Version 1 of Mangler Encryption Algorythm, 1984. | // Derived from Version 1 of Mangler Encryption Algorythm, 1984. | ||||
// Derived from Version 2 of Mangler Encryption Algorythm, 1998. | // Derived from Version 2 of Mangler Encryption Algorythm, 1998. | ||||
// | // | ||||
// 20020119 _M Mangler V3. | // 20020119 _M Mangler V3. | ||||
// Mangler object header file. | // Mangler object header file. | ||||
// If it's already been included, it doesn't need to be included again. | |||||
#ifndef _MANGLER_ | |||||
#define _MANGLER_ | |||||
#pragma once | |||||
class MANGLER { | |||||
namespace codedweller { | |||||
class Mangler { | |||||
private: | private: | ||||
unsigned char Fill[256]; // Where to store the fill. | unsigned char Fill[256]; // Where to store the fill. | ||||
unsigned char Encrypt(unsigned char i); // Returns encrypted data. | unsigned char Encrypt(unsigned char i); // Returns encrypted data. | ||||
unsigned char Decrypt(unsigned char i); // Returns decrypted data. | unsigned char Decrypt(unsigned char i); // Returns decrypted data. | ||||
MANGLER(void); // Default. | |||||
Mangler(void); // Default. | |||||
}; | }; | ||||
#endif | |||||
} // End namespace codedweller |
// mishmash.cpp (c) 20190407 _M | |||||
// non-cryptographic has for short strings | |||||
// mishmash.cpp | |||||
// | |||||
// Copyright (C) 2019-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | |||||
// Mishmash is a non-cryptographic hash optimized for short strings. | |||||
#include "mishmash.hpp" | #include "mishmash.hpp" | ||||
namespace codedweller { | namespace codedweller { | ||||
uint32_t primes[256] { | |||||
1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, | |||||
1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, | |||||
1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, | |||||
1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, | |||||
1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, | |||||
1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, | |||||
1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, | |||||
1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, | |||||
uint32_t primes[256] { | |||||
1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, | |||||
1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, | |||||
1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, | |||||
1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, | |||||
1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, | |||||
1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, | |||||
1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, | |||||
1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, | |||||
1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, | |||||
1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, | |||||
1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, | |||||
1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, | |||||
1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, | |||||
1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, | |||||
1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, | |||||
1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, | |||||
1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, | |||||
1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, | |||||
1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, | |||||
1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, | |||||
1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, | |||||
1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, | |||||
1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, | |||||
1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, | |||||
1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, | |||||
2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, | |||||
2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, | |||||
2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, | |||||
2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, | |||||
2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, | |||||
2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, | |||||
2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, | |||||
2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, | |||||
2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, | |||||
2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, | |||||
2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, | |||||
2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, | |||||
2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, | |||||
2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, | |||||
2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957 | |||||
}; | |||||
1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, | |||||
2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, | |||||
2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, | |||||
2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, | |||||
2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, | |||||
2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, | |||||
2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, | |||||
2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, | |||||
2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, | |||||
2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, | |||||
2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, | |||||
2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, | |||||
2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, | |||||
2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, | |||||
2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, | |||||
2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957 | |||||
}; | |||||
inline size_t mod256(size_t n) noexcept { return (n & 0xff); } | |||||
inline uint32_t selectedPrime(size_t n) noexcept { return primes[mod256(n)]; } | |||||
inline size_t mod256(size_t n) noexcept { return (n & 0xff); } | |||||
uint32_t mishmash(const unsigned char* buffer, size_t length) noexcept { | |||||
uint64_t accumulator = selectedPrime(length); | |||||
for(size_t index = 0; index < length; index++) { | |||||
unsigned char byte = buffer[index]; | |||||
accumulator += selectedPrime(index + accumulator); | |||||
accumulator *= selectedPrime(byte + accumulator); | |||||
accumulator += accumulator >> 32; | |||||
accumulator &= 0x00000fffffffffff; | |||||
} | |||||
return static_cast<uint32_t>(accumulator); | |||||
uint32_t mishmash(const unsigned char* buffer, size_t length) noexcept { | |||||
uint64_t accumulator = selectedPrime(length); | |||||
for(size_t index = 0; index < length; index++) { | |||||
unsigned char byte = buffer[index]; | |||||
accumulator += selectedPrime(index + accumulator); | |||||
accumulator *= selectedPrime(byte + accumulator); | |||||
accumulator += accumulator >> 32; | |||||
accumulator &= 0x00000fffffffffff; | |||||
} | } | ||||
return static_cast<uint32_t>(accumulator); | |||||
} | |||||
uint32_t mishmash(const std::string& s) noexcept { | |||||
return mishmash((const unsigned char*) s.c_str(), s.length()); | |||||
} | |||||
uint32_t mishmash(const std::string& s) noexcept { | |||||
return mishmash((const unsigned char*) s.c_str(), s.length()); | |||||
} | |||||
uint32_t mishmash(const std::vector<unsigned char>& v) noexcept { | |||||
return mishmash(v.data(), v.size()); | |||||
} | |||||
uint32_t mishmash(const std::vector<unsigned char>& v) noexcept { | |||||
return mishmash(v.data(), v.size()); | |||||
} | |||||
} | } |
// mishmash.hpp (c) 20190407 _M | |||||
// mishmash.hpp// | |||||
// Copyright (C) 2019-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | |||||
// Mishamash is a non-cryptographic hash optimized for short strings. | |||||
#pragma once | #pragma once | ||||
#include <string> | #include <string> | ||||
namespace codedweller { | namespace codedweller { | ||||
uint32_t mishmash(const unsigned char* buffer, size_t length) noexcept; | |||||
uint32_t mishmash(const std::string &s) noexcept; | |||||
uint32_t mishmash(const std::vector<unsigned char>& v) noexcept; | |||||
uint32_t mishmash(const unsigned char* buffer, size_t length) noexcept; | |||||
uint32_t mishmash(const std::string &s) noexcept; | |||||
uint32_t mishmash(const std::vector<unsigned char>& v) noexcept; | |||||
} | |||||
} // End namespace codedweller |
// networking.cpp | // networking.cpp | ||||
// Copyright (C) 2006-2009 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
//============================================================================== | |||||
// See networking.hpp for notes. | |||||
// See networking.inline.hpp for inlined methods & functions. | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
#include "networking.hpp" | #include "networking.hpp" | ||||
Networking Network; // Finally creating the Network instance. | |||||
namespace codedweller { | |||||
Networking Network; // Creating _THE_ Network instance. | |||||
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) | |||||
int Networking::getLastError() { // In windows you get the last error | |||||
return WSAGetLastError(); // from WSAGetLastError(); | |||||
} | |||||
int Networking::setNonBlocking(hSocket socket) { // Set a winsock to non-blocking | |||||
unsigned long nonblocking = 1; // Create a flag... | |||||
int result = 0; | |||||
if(0 != ioctlsocket(socket, FIONBIO, &nonblocking)) { // Set the state of the socket. | |||||
result = -1; // If that fails then return -1. | |||||
} | |||||
return result; // Show 'em my motto! | |||||
} | |||||
int Networking::closeSocket(hSocket socket) { // Close a socket in winsock | |||||
return closesocket(socket); // wraps closesocket(). | |||||
} | |||||
bool Networking::WouldBlock(int ErrorCode) { // ErrorCode matches [WSA]EWOULDBLOCK. | |||||
return (WSAEWOULDBLOCK == ErrorCode); | |||||
} | |||||
bool Networking::InProgress(int ErrorCode) { // ErrorCode matches [WSA]EINPROGRESS. | |||||
return( // [WSA]EALREADY also returns true. | |||||
WSAEINPROGRESS == ErrorCode || // In fact, on Win* platforms we could | |||||
WSAEALREADY == ErrorCode || // get any of these when retesting | |||||
WSAEWOULDBLOCK == ErrorCode || // open() for a connection. | |||||
WSAEINVAL == ErrorCode | |||||
); | |||||
} | |||||
bool Networking::IsConnected(int ErrorCode) { // ErrorCode matches [WSA]EISCONN. | |||||
return(WSAEISCONN == ErrorCode); | |||||
} | |||||
#else | |||||
//// GNU platform | |||||
int Networking::getLastError() { // In GNU you get the last error | |||||
return errno; // from errno; | |||||
} | |||||
int Networking::setNonBlocking(hSocket socket) { // Set a socket to non-blocking | |||||
int flags, result; // Grab a place to hold the flags. | |||||
flags = fcntl(socket, F_GETFL, 0); // Get the current flags. | |||||
result = fcntl(socket, F_SETFL, flags | O_NONBLOCK); // Set the NONBLOCK flag & return. | |||||
return result; // Return the result. | |||||
} | |||||
int Networking::closeSocket(hSocket socket) { // Close a socket in GNU | |||||
return close(socket); // wraps close(). | |||||
} | |||||
bool Networking::WouldBlock(int ErrorCode) { // ErrorCode matches [WSA]EWOULDBLOCK. | |||||
return (EWOULDBLOCK == ErrorCode); | |||||
} | |||||
bool Networking::InProgress(int ErrorCode) { // ErrorCode matches [WSA]EINPROGRESS. | |||||
return( // [WSA]EALREADY also returns true. | |||||
EINPROGRESS == ErrorCode || | |||||
EALREADY == ErrorCode | |||||
); | |||||
} | |||||
bool Networking::IsConnected(int ErrorCode) { // ErrorCode matches [WSA]EISCONN. | |||||
return(EISCONN == ErrorCode); | |||||
} | |||||
#endif | |||||
// End Platform Specific | |||||
//////////////////////////////////////////////////////////////////////////////// | |||||
// Begin Platform Agnostic | |||||
//// class IP4Address ////////////////////////////////////////////////////////// | |||||
IP4Address::IP4Address():IP(0){} // Blank constructor IP = 0.0.0.0 | |||||
IP4Address::IP4Address(const unsigned long int newIP):IP(newIP){} // Constructor given unsigned long | |||||
IP4Address::IP4Address(const IP4Address& newIP):IP(newIP.IP){} // Constructor given an IP4Address | |||||
IP4Address::IP4Address(const char* newIP) { (*this) = newIP; } // Construcing with a cstring. | |||||
IP4Address::IP4Address(const std::string& newIP) { (*this) = newIP; } // Constructing with a cppstring. | |||||
IP4Address& IP4Address::operator=(const unsigned long int Right) { // Convert from unsigned long int. | |||||
IP = Right; | |||||
return *this; | |||||
} | |||||
IP4Address& IP4Address::operator=(const char* Right) { // Convert from c string. | |||||
IP = ntohl(inet_addr(Right)); | |||||
return *this; | |||||
} | |||||
IP4Address& IP4Address::operator=(const std::string& Right) { // Convert from cpp string. | |||||
IP = ntohl(inet_addr(Right.c_str())); | |||||
return *this; | |||||
} | |||||
bool IP4Address::operator<(const IP4Address Right) const { // < Comparison. | |||||
return (IP < Right.IP); | |||||
} | |||||
bool IP4Address::operator>(const IP4Address Right) const { // > Comparison. | |||||
return (IP > Right.IP); | |||||
} | |||||
bool IP4Address::operator==(const IP4Address Right) const { // == Comparison. | |||||
return (IP == Right.IP); | |||||
} | |||||
bool IP4Address::operator!=(const IP4Address Right) const { // != Comparison. | |||||
return (IP != Right.IP); | |||||
} | |||||
bool IP4Address::operator<=(const IP4Address Right) const { // <= Comparison. | |||||
return (IP <= Right.IP); | |||||
} | |||||
bool IP4Address::operator>=(const IP4Address Right) const { // >= Comparison. | |||||
return (IP >= Right.IP); | |||||
} | |||||
//// class SocketAddress /////////////////////////////////////////////////////// | |||||
void SocketAddress::clear() { | |||||
memset(&Address, 0, sizeof(Address)); // Zero out the address strcuture | |||||
Address.sin_family = AF_INET; // Internet Address Family ip4 | |||||
Address.sin_addr.s_addr = htonl(INADDR_ANY); // Any IP address | |||||
Address.sin_port = 0; // Zero means any port. | |||||
} | |||||
SocketAddress::SocketAddress() { // Constructor sets up w/ wildcards | |||||
clear(); // Conveniently, we can use clear() :-) | |||||
} | |||||
struct sockaddr_in* SocketAddress::getPtr_sockaddr_in() { // Returns a pointer to sockaddr_in. | |||||
return &Address; // Simply return it's address. | |||||
} | |||||
struct sockaddr* SocketAddress::getPtr_sockaddr() { // Returns a pointer to sockaddr. | |||||
return (struct sockaddr*) &Address; | |||||
} | |||||
socklen_t SocketAddress::getAddressSize() { | |||||
return sizeof(Address); // Return the size of the structure. | |||||
} | |||||
void SocketAddress::setAddress(unsigned long ipAddress) { // Set the IP address from an unsigned int | |||||
Address.sin_addr.s_addr = htonl(ipAddress); // Convert to network order and assign. | |||||
} | |||||
void SocketAddress::setAddress(char* ipString) { // Set the IP address from a cstring | |||||
Address.sin_addr.s_addr = inet_addr(ipString); // Convert to number and assign. | |||||
} | |||||
unsigned long SocketAddress::getAddress() { // Get the IP address as an unsigned int | |||||
return ntohl(Address.sin_addr.s_addr); // Convert to host order and return. | |||||
} | |||||
void SocketAddress::setPort(unsigned short port) { // Set the port address from an int | |||||
Address.sin_port = htons(port); // Convert to network order and set. | |||||
} | |||||
void SocketAddress::setPort(char* port) { // Set the port address from a cstring | |||||
setPort(atoi(port)); // Convert to int and set. | |||||
} | |||||
unsigned short SocketAddress::getPort() { // Get the port address as an unsigned int | |||||
return ntohs(Address.sin_port); // Convert to host order and return. | |||||
} | |||||
const char* SocketAddress::getPort(char* str) { // Get the port address into a cstring. | |||||
if(NULL == str) { // If the caller did not provide a | |||||
str = PortStringBuffer; // buffer to use then we will use ours. | |||||
} | |||||
sprintf(str,"%d",getPort()); // Get the port and convert to cstring. | |||||
return str; // Return the string we got. | |||||
} | |||||
//// class Socket ////////////////////////////////////////////////////////////// | |||||
Socket::Socket() : // When starting up we are | |||||
Handle(INVALID_SOCKET), OpenSucceeded(false) { // not yet valid. | |||||
} | |||||
Socket::~Socket() { // When shutting down, be sure | |||||
if(INVALID_SOCKET != Handle) { // any open socket is closed without | |||||
Network.closeSocket(Handle); // throwing any exceptions. | |||||
} | |||||
} | |||||
void Socket::close() { // When we close, | |||||
if(INVALID_SOCKET != Handle) { // If the handle is open then | |||||
if(Network.closeSocket(Handle)) { // close the handle and check for error. | |||||
LastError = Network.getLastError(); // If there was an error record it. | |||||
if(!Network.WouldBlock(LastError)) { // If the error was not WOULDBLOCK | |||||
throw Networking::ControlError( // then throw a ControlError exception. | |||||
Network.DescriptiveError( | |||||
"Socket::close()", LastError)); | |||||
} | |||||
} else { // If there was no error then | |||||
LastError = 0; // reset the LastError value. | |||||
} | |||||
Handle = INVALID_SOCKET; // and reset the handle to INVALID. | |||||
NonBlocking = false; // The default is Blocking. | |||||
OpenSucceeded = false; // After close, forget we opened. | |||||
} | |||||
} | |||||
hSocket Socket::getHandle() { // Returns the current Socket handle. | |||||
return Handle; | |||||
} | |||||
bool Socket::isNonBlocking() { // Returns true if socket is NonBlocking | |||||
return NonBlocking; | |||||
} | |||||
void Socket::makeNonBlocking() { // Sets the socket to NonBlocking mode. | |||||
if(0 > Network.setNonBlocking(Handle)) { // Feed the call through Network. | |||||
LastError = Network.getLastError(); // If it didn't work, go get the error. | |||||
NonBlocking = false; // We are NOT NonBlocking. | |||||
throw Networking::ControlError( // Throw a control error. | |||||
Network.DescriptiveError( | |||||
"Socket::makeNonBlocking()", LastError)); | |||||
} else { | |||||
NonBlocking = true; // If we didn't throw, we're ON. | |||||
} | |||||
} | |||||
bool Socket::isReuseAddress() { return ReuseAddress; } // True if socket is set SO_REUSEADDR. | |||||
bool Socket::isReuseAddress(bool set) { return (ReuseAddress = set); } // Changes SO_REUSEADDR setting. | |||||
bool Socket::isOpen() { // True if the socket is open. | |||||
return( | |||||
INVALID_SOCKET != Handle && // A valid handle and | |||||
true == OpenSucceeded // a successful open operation | |||||
); // means we're open. | |||||
} | |||||
int Socket::getLastError() { // Returns the last error for this socket. | |||||
return LastError; | |||||
} | |||||
//// class TCPClient /////////////////////////////////////////////////////////// | |||||
TCPClient::TCPClient(TCPListener& L, hSocket H, SocketAddress& A) : // How to create a TCPClient. | |||||
MyListener(L) { // Capture our listener. | |||||
Handle = H; // Capture the new socket handle. | |||||
RemoteAddress = A; // Capture the client address. | |||||
ReadPointer = ReadBuffer; // Set the read position to zero. | |||||
DataLength = 0; // There is no data yet. | |||||
OpenSucceeded = true; // We're getting an open socket. | |||||
} | |||||
TCPClient::~TCPClient() { // When destroying a TCPClient | |||||
try{ if(isOpen()) close(); } catch(...) {} // silently close any open connections. | |||||
} | |||||
void TCPClient::open() { // We provide open() as unsupported. | |||||
throw Networking::NotSupportedError( // Throw an exception if this is called. | |||||
Network.DescriptiveError( | |||||
"TCPClient::open()", LastError)); | |||||
} | |||||
bool TCPClient::ReadBufferIsEmpty() { // True if the ReadBuffer is empty. | |||||
return (0 >= DataLength); // We can check that with DataLength. | |||||
} | |||||
void TCPClient::fillReadBuffer() { // Fills the buffer from the socket. | |||||
LastError = 0; // Clear the LastError value. | |||||
ReadPointer = ReadBuffer; // Reset the ReadPointer. | |||||
DataLength = recv(Handle, ReadBuffer, sizeof(ReadBuffer), MSG_NOSIGNAL); // Try to read some data. | |||||
if(0 >= DataLength) { // If there was an error then | |||||
LastError = Network.getLastError(); // Grab the last error code. | |||||
DataLength = 0; // Correct the DataLength. | |||||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||||
return; // simply return - it's ok. | |||||
} else { // If it was a different error | |||||
throw Networking::SocketReadError( // then throw a ReadError. | |||||
Network.DescriptiveError( | |||||
"TCPClient::fillReadBuffer()", LastError)); | |||||
} | |||||
} // If we succeeded then our ReadBuffer | |||||
} // assembly is in good shape. | |||||
bool TCPClient::isNonBlocking() { // Provided for MessagePort. | |||||
return Socket::isNonBlocking(); | |||||
} | |||||
unsigned long TCPClient::getRemoteIP() { // Get remote IP as long. | |||||
return RemoteAddress.getAddress(); | |||||
} | |||||
const char* TCPClient::getRemoteIP(char* str) { // Get IP as string. | |||||
return RemoteAddress.getAddress(str); | |||||
} | |||||
unsigned short TCPClient::getRemotePort() { // Get remote Port as unsigned short. | |||||
return RemoteAddress.getPort(); | |||||
} | |||||
const char* TCPClient::getRemotePort(char* str) { // Get Port as string. | |||||
return RemoteAddress.getPort(str); | |||||
} | |||||
//// class TCPHost ///////////////////////////////////////////////////////////// | |||||
TCPHost::~TCPHost() { // When destroying a TCPHost | |||||
try{ if(isOpen()) close(); } catch(...) {} // silently close any open connection. | |||||
} | |||||
bool TCPHost::ReadBufferIsEmpty() { // True if the ReadBuffer is empty. | |||||
return (0 >= DataLength); // We can check that with DataLength. | |||||
} | |||||
void TCPHost::fillReadBuffer() { // Fills the buffer from the socket. | |||||
LastError = 0; // Clear the LastError value. | |||||
ReadPointer = ReadBuffer; // Reset the ReadPointer. | |||||
DataLength = recv(Handle, ReadBuffer, sizeof(ReadBuffer), MSG_NOSIGNAL); // Try to read some data. | |||||
if(0 >= DataLength) { // If there was an error then | |||||
LastError = Network.getLastError(); // Grab the last error code. | |||||
DataLength = 0; // Correct the DataLength. | |||||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||||
return; // simply return - it's ok. | |||||
} else { // If it was a different error | |||||
throw Networking::SocketReadError( // then throw a ReadError. | |||||
Network.DescriptiveError( | |||||
"TCPHost::fillReadBuffer()", LastError)); | |||||
} | |||||
} // If we succeeded then our ReadBuffer | |||||
} // assembly is in good shape. | |||||
bool TCPHost::isNonBlocking() { // Provided for MessagePort. | |||||
return Socket::isNonBlocking(); | |||||
} | |||||
//// class TCPListener ///////////////////////////////////////////////////////// | |||||
TCPListener::~TCPListener() { // When destroying a TCPListener | |||||
try{ close(); } catch(...) {} // silently close if not already done. | |||||
} | |||||
//// Platform Specific Stuff /////////////////////////////////////////////////// | //// Platform Specific Stuff /////////////////////////////////////////////////// | ||||
// Error description handling for humans. | // Error description handling for humans. | ||||
string Networking::DescriptiveError(string Msg, int Errno) { // Form a descriptive error w/ errno. | |||||
string s = ""; // Message string. | |||||
std::string Networking::DescriptiveError(std::string Msg, int Errno) { // Form a descriptive error w/ errno. | |||||
std::string s = ""; // Message string. | |||||
switch(Errno) { // Assign the appropriate message. | switch(Errno) { // Assign the appropriate message. | ||||
case WSA_INVALID_HANDLE: s = "WSA_INVALID_HANDLE"; break; | case WSA_INVALID_HANDLE: s = "WSA_INVALID_HANDLE"; break; | ||||
Msg.append(s); // then append it. | Msg.append(s); // then append it. | ||||
} | } | ||||
else { // If we don't know what Errno means | else { // If we don't know what Errno means | ||||
ostringstream ErrNoMsg; // then say so and pass on Errno as | |||||
std::ostringstream ErrNoMsg; // then say so and pass on Errno as | |||||
ErrNoMsg << " UNKNOWN ErrorNumber = " << Errno; // well so someone can figure it out. | ErrNoMsg << " UNKNOWN ErrorNumber = " << Errno; // well so someone can figure it out. | ||||
Msg.append(ErrNoMsg.str()); | Msg.append(ErrNoMsg.str()); | ||||
} | } | ||||
// Error description handling for humans. | // Error description handling for humans. | ||||
string Networking::DescriptiveError(string Msg, int Errno) { // Form a descriptive error w/ errno. | |||||
std::string Networking::DescriptiveError(std::string Msg, int Errno) { // Form a descriptive error w/ errno. | |||||
Msg.append(" "); Msg.append(strerror(Errno)); | Msg.append(" "); Msg.append(strerror(Errno)); | ||||
return Msg; | return Msg; | ||||
}; | }; | ||||
return IP; // Return it. | return IP; // Return it. | ||||
} | } | ||||
IP4Address::operator string() const { // Assign to a string. | |||||
IP4Address::operator std::string() const { // Assign to a string. | |||||
char stringbfr[IPStringBufferSize]; // Grab a temporary buffer. | char stringbfr[IPStringBufferSize]; // Grab a temporary buffer. | ||||
memset(stringbfr, 0, sizeof(stringbfr)); // Null out it's space. | memset(stringbfr, 0, sizeof(stringbfr)); // Null out it's space. | ||||
int a0, a1, a2, a3; // Grab some integers. | int a0, a1, a2, a3; // Grab some integers. | ||||
splitIP(IP, a0, a1, a2, a3); // Split the IP in the IP4Address. | splitIP(IP, a0, a1, a2, a3); // Split the IP in the IP4Address. | ||||
sprintf(stringbfr, "%d.%d.%d.%d", a0, a1, a2, a3); // Format the octets. | sprintf(stringbfr, "%d.%d.%d.%d", a0, a1, a2, a3); // Format the octets. | ||||
return string(stringbfr); // Return a string. | |||||
return std::string(stringbfr); // Return a string. | |||||
} | } | ||||
//// SocketAddress methods ///////////////////////////////////////////////////// | //// SocketAddress methods ///////////////////////////////////////////////////// | ||||
if(!OpenStage2Complete) { // Do this stage only once. | if(!OpenStage2Complete) { // Do this stage only once. | ||||
int result = // Bind our socket to the LocalAddress. | int result = // Bind our socket to the LocalAddress. | ||||
::bind( | |||||
bind( | |||||
Handle, | Handle, | ||||
LocalAddress.getPtr_sockaddr(), | LocalAddress.getPtr_sockaddr(), | ||||
LocalAddress.getAddressSize()); | LocalAddress.getAddressSize()); | ||||
return NULL; // non blocking mode so we return | return NULL; // non blocking mode so we return | ||||
} // NULL when we see them. | } // NULL when we see them. | ||||
} | } | ||||
// Set SO_NOSIGPIPE if needed | |||||
if( // On some systems we may have to | |||||
0 != SO_NOSIGPIPE && // use SO_NOSIPIPE but if they offer | |||||
0 == MSG_NOSIGNAL // MSG_NOSIGNAL we prefer that instead. | |||||
) { | |||||
int TurnedOn = 1; // Prepare to turn this option on. | |||||
int result = // Set SO_NOSIGPIPE. | |||||
setsockopt( | |||||
NewHandle, | |||||
SOL_SOCKET, | |||||
SO_NOSIGPIPE, | |||||
(char*) &TurnedOn, | |||||
sizeof(TurnedOn)); | |||||
if(0 > result) { // If there was an error then | |||||
LastError = Network.getLastError(); // Capture the error information | |||||
Network.closeSocket(NewHandle); // close the handle (avoid leaks) | |||||
throw Networking::SocketSetSockOptError( // and throw a descriptive exception. | |||||
Network.DescriptiveError( | |||||
"TCPListener::acceptClient().setsockopt(SO_NOSIGPIPE)", LastError)); | |||||
} | |||||
} | |||||
// Set SO_NOSIGPIPE if needed | |||||
if( // On some systems we may have to | |||||
0 != SO_NOSIGPIPE && // use SO_NOSIPIPE but if they offer | |||||
0 == MSG_NOSIGNAL // MSG_NOSIGNAL we prefer that instead. | |||||
) { | |||||
int TurnedOn = 1; // Prepare to turn this option on. | |||||
int result = // Set SO_NOSIGPIPE. | |||||
setsockopt( | |||||
NewHandle, | |||||
SOL_SOCKET, | |||||
SO_NOSIGPIPE, | |||||
(char*) &TurnedOn, | |||||
sizeof(TurnedOn)); | |||||
if(0 > result) { // If there was an error then | |||||
LastError = Network.getLastError(); // Capture the error information | |||||
Network.closeSocket(NewHandle); // close the handle (avoid leaks) | |||||
throw Networking::SocketSetSockOptError( // and throw a descriptive exception. | |||||
Network.DescriptiveError( | |||||
"TCPListener::acceptClient().setsockopt(SO_NOSIGPIPE)", LastError)); | |||||
} | |||||
} | |||||
// If things have gone well we can do what we came for. | // If things have gone well we can do what we came for. | ||||
if(0 > size) // Watch out for bad sizes. | if(0 > size) // Watch out for bad sizes. | ||||
throw Networking::SocketWriteError("TCPClient::transmit() 0 > size!"); | throw Networking::SocketWriteError("TCPClient::transmit() 0 > size!"); | ||||
LastError = 0; // No errors yet. | |||||
int ByteCount = 0; // No bytes sent yet this pass. | |||||
LastError = 0; // No errors yet. | |||||
int ByteCount = 0; // No bytes sent yet this pass. | |||||
ByteCount = send(Handle, bfr, size, MSG_NOSIGNAL); // Try to send and capture the count. | ByteCount = send(Handle, bfr, size, MSG_NOSIGNAL); // Try to send and capture the count. | ||||
LastError = Network.getLastError(); // Grab any error code. | |||||
bool AnErrorOccurred = (0 > ByteCount); // How to know if an error occurred. | |||||
const int NoBytesSent = 0; // This is our "Would Block" result. | |||||
LastError = Network.getLastError(); // Grab any error code. | |||||
bool AnErrorOccurred = (0 > ByteCount); // How to know if an error occurred. | |||||
const int NoBytesSent = 0; // This is our "Would Block" result. | |||||
if(AnErrorOccurred) { // If there was an error check it out. | if(AnErrorOccurred) { // If there was an error check it out. | ||||
if(Network.WouldBlock(LastError)) { // If the error was "Would Block" then | if(Network.WouldBlock(LastError)) { // If the error was "Would Block" then | ||||
return NoBytesSent; // return no bytes sent (try again). | return NoBytesSent; // return no bytes sent (try again). | ||||
"TCPClient::transmit().send()", LastError)); | "TCPClient::transmit().send()", LastError)); | ||||
} | } | ||||
} | } | ||||
return ByteCount; // Usually: return the sent byte count. | return ByteCount; // Usually: return the sent byte count. | ||||
} | } | ||||
LastError = 0; // Clear our LastError value. | LastError = 0; // Clear our LastError value. | ||||
bool SuccessFlag = true; // Begin optimistically. | bool SuccessFlag = true; // Begin optimistically. | ||||
// Set Socket Options | |||||
// Set Socket Options | |||||
if(!OpenStage1Complete) { // If we haven't done this yet: | if(!OpenStage1Complete) { // If we haven't done this yet: | ||||
// Set SO_REUSEADDR if turned on | |||||
// Set SO_REUSEADDR if turned on | |||||
int ReuseAddress_Flag = (ReuseAddress? 1:0); // Setup an appropriate integer flag. | int ReuseAddress_Flag = (ReuseAddress? 1:0); // Setup an appropriate integer flag. | ||||
int result = // Set SO_REUSEADDR before bind(). | int result = // Set SO_REUSEADDR before bind(). | ||||
setsockopt( | setsockopt( | ||||
Network.DescriptiveError( | Network.DescriptiveError( | ||||
"TCPHost::open().setsockopt(SO_REUSEADDR)", LastError)); | "TCPHost::open().setsockopt(SO_REUSEADDR)", LastError)); | ||||
} | } | ||||
// Set SO_NOSIGPIPE if needed | |||||
if( // On some systems we may have to | |||||
0 != SO_NOSIGPIPE && // use SO_NOSIPIPE but if they offer | |||||
0 == MSG_NOSIGNAL // MSG_NOSIGNAL we prefer that instead. | |||||
) { | |||||
int TurnedOn = 1; // Prepare to turn this option on. | |||||
int result = // Set SO_NOSIGPIPE. | |||||
setsockopt( | |||||
Handle, | |||||
SOL_SOCKET, | |||||
SO_NOSIGPIPE, | |||||
(char*) &TurnedOn, | |||||
sizeof(TurnedOn)); | |||||
if(0 > result) { // If there was an error then | |||||
SuccessFlag = false; // we did not succeed. | |||||
LastError = Network.getLastError(); // Capture the error information and | |||||
throw Networking::SocketSetSockOptError( // throw. | |||||
Network.DescriptiveError( | |||||
"TCPHost::open().setsockopt(SO_NOSIGPIPE)", LastError)); | |||||
} | |||||
} | |||||
// Set SO_NOSIGPIPE if needed | |||||
if( // On some systems we may have to | |||||
0 != SO_NOSIGPIPE && // use SO_NOSIPIPE but if they offer | |||||
0 == MSG_NOSIGNAL // MSG_NOSIGNAL we prefer that instead. | |||||
) { | |||||
int TurnedOn = 1; // Prepare to turn this option on. | |||||
int result = // Set SO_NOSIGPIPE. | |||||
setsockopt( | |||||
Handle, | |||||
SOL_SOCKET, | |||||
SO_NOSIGPIPE, | |||||
(char*) &TurnedOn, | |||||
sizeof(TurnedOn)); | |||||
if(0 > result) { // If there was an error then | |||||
SuccessFlag = false; // we did not succeed. | |||||
LastError = Network.getLastError(); // Capture the error information and | |||||
throw Networking::SocketSetSockOptError( // throw. | |||||
Network.DescriptiveError( | |||||
"TCPHost::open().setsockopt(SO_NOSIGPIPE)", LastError)); | |||||
} | |||||
} | |||||
OpenStage1Complete = true; // Skip this section from now on. | OpenStage1Complete = true; // Skip this section from now on. | ||||
} // Done with stage 1. | } // Done with stage 1. | ||||
// End Platform Agnostic Stuff | // End Platform Agnostic Stuff | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
} // End namespace codedweller |
// networking.hpp | // networking.hpp | ||||
// Copyright (C) 2006-2009 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
//============================================================================== | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// The networking module abstracts network communications and provides a set | // The networking module abstracts network communications and provides a set | ||||
// of objects for handling most tasks. | |||||
// 20080313 _M Refactored to throw proper runtime_error exceptions. | |||||
// of objects for handling most tasks on both win* and *nix. | |||||
// Include only once... | |||||
#ifndef M_Networking | |||||
#define M_Networking | |||||
#pragma once | |||||
#include <stdexcept> | #include <stdexcept> | ||||
#include <iostream> | #include <iostream> | ||||
#include <sstream> | #include <sstream> | ||||
#include <cstring> | #include <cstring> | ||||
using namespace std; | |||||
#include <cstdlib> | #include <cstdlib> | ||||
#include <cstdio> | #include <cstdio> | ||||
#include <cerrno> | #include <cerrno> | ||||
//// Windows headers... | //// Windows headers... | ||||
#include <winsock2.h> | #include <winsock2.h> | ||||
namespace codedweller { | |||||
typedef int socklen_t; // Posix uses socklen_t so we mimic it. | typedef int socklen_t; // Posix uses socklen_t so we mimic it. | ||||
typedef SOCKET hSocket; // Winx handles Socket is opaque. | typedef SOCKET hSocket; // Winx handles Socket is opaque. | ||||
} // End namespace codedweller | |||||
#else | #else | ||||
//// GNU Headers... | //// GNU Headers... | ||||
#include <unistd.h> | #include <unistd.h> | ||||
#include <fcntl.h> | #include <fcntl.h> | ||||
namespace codedweller { | |||||
typedef int hSocket; // *nix uses int to handle a Socket. | typedef int hSocket; // *nix uses int to handle a Socket. | ||||
const hSocket INVALID_SOCKET = -1; // -1 is the invalid Socket. | const hSocket INVALID_SOCKET = -1; // -1 is the invalid Socket. | ||||
} // End namespace codedweller | |||||
#endif | |||||
namespace codedweller { | |||||
//// Handling SIGPIPE ////////////////////////////////////////////////////////// | |||||
#ifndef MSG_NOSIGNAL | |||||
const int MSG_NOSIGNAL = 0; // Fake this if it isn't defined. | |||||
#endif | |||||
#ifndef SO_NOSIGPIPE | |||||
const int SO_NOSIGPIPE = 0; // Fake this if it isn't defined. | |||||
#endif | #endif | ||||
//// Handling SIGPIPE ////////////////////////////////////////////////////////// | |||||
#ifndef MSG_NOSIGNAL | |||||
const int MSG_NOSIGNAL = 0; // Fake this if it isn't defined. | |||||
#endif | |||||
#ifndef SO_NOSIGPIPE | |||||
const int SO_NOSIGPIPE = 0; // Fake this if it isn't defined. | |||||
#endif | |||||
//// Tuning and Constants ////////////////////////////////////////////////////// | //// Tuning and Constants ////////////////////////////////////////////////////// | ||||
const unsigned long LOCALHOST = 0x7F000001; // 127.0.0.1 as an integer. | const unsigned long LOCALHOST = 0x7F000001; // 127.0.0.1 as an integer. | ||||
IP4Address(const IP4Address&); // Constructor given an IP4Address | IP4Address(const IP4Address&); // Constructor given an IP4Address | ||||
IP4Address(const char* newIP); // Construcing with a cstring. | IP4Address(const char* newIP); // Construcing with a cstring. | ||||
IP4Address(const string& newIP); // Constructing with a cppstring. | |||||
IP4Address(const std::string& newIP); // Constructing with a cppstring. | |||||
IP4Address& operator=(const unsigned long int Right); // Convert from unsigned long int. | IP4Address& operator=(const unsigned long int Right); // Convert from unsigned long int. | ||||
IP4Address& operator=(const char* Right); // Convert from c string. | IP4Address& operator=(const char* Right); // Convert from c string. | ||||
IP4Address& operator=(const string& Right); // Convert from cpp string. | |||||
IP4Address& operator=(const std::string& Right); // Convert from cpp string. | |||||
operator unsigned long int() const; | operator unsigned long int() const; | ||||
operator string() const; | |||||
operator std::string() const; | |||||
bool operator<(const IP4Address Right) const; // < Comparison. | bool operator<(const IP4Address Right) const; // < Comparison. | ||||
bool operator>(const IP4Address Right) const; // > Comparison. | bool operator>(const IP4Address Right) const; // > Comparison. | ||||
public: | public: | ||||
class NotSupportedError : public runtime_error { // Thrown when something can't be done. | |||||
public: NotSupportedError(const string& w):runtime_error(w) {} | |||||
class NotSupportedError : public std::runtime_error { // Thrown when something can't be done. | |||||
public: NotSupportedError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class InitializationError : public runtime_error { // Thrown if initialization fails. | |||||
public: InitializationError(const string& w):runtime_error(w) {} | |||||
class InitializationError : public std::runtime_error { // Thrown if initialization fails. | |||||
public: InitializationError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class ControlError : public runtime_error { // Thrown if control functions fail. | |||||
public: ControlError(const string& w):runtime_error(w) {} | |||||
class ControlError : public std::runtime_error { // Thrown if control functions fail. | |||||
public: ControlError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketCreationError : public runtime_error { // Thrown if a call to socket() fails. | |||||
public: SocketCreationError(const string& w):runtime_error(w) {} | |||||
class SocketCreationError : public std::runtime_error { // Thrown if a call to socket() fails. | |||||
public: SocketCreationError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketSetSockOptError : public runtime_error { | |||||
public: SocketSetSockOptError(const string& w):runtime_error(w) {} // Thrown if a call to setsockopt() fails. | |||||
class SocketSetSockOptError : public std::runtime_error { // Thrown if a call to setsockopt() fails. | |||||
public: SocketSetSockOptError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketBindError : public runtime_error { // Thrown if a call to bind() fails. | |||||
public: SocketBindError(const string& w):runtime_error(w) {} | |||||
class SocketBindError : public std::runtime_error { // Thrown if a call to bind() fails. | |||||
public: SocketBindError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketListenError : public runtime_error { // Thrown if a call to listen() fails. | |||||
public: SocketListenError(const string& w):runtime_error(w) {} | |||||
class SocketListenError : public std::runtime_error { // Thrown if a call to listen() fails. | |||||
public: SocketListenError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketConnectError : public runtime_error { // Thrown if a call to connect() fails. | |||||
public: SocketConnectError(const string& w):runtime_error(w) {} | |||||
class SocketConnectError : public std::runtime_error { // Thrown if a call to connect() fails. | |||||
public: SocketConnectError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketAcceptError : public runtime_error { // Thrown if a call to accept() fails. | |||||
public: SocketAcceptError(const string& w):runtime_error(w) {} | |||||
class SocketAcceptError : public std::runtime_error { // Thrown if a call to accept() fails. | |||||
public: SocketAcceptError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketReadError : public runtime_error { // Thrown if a socket read call fails. | |||||
public: SocketReadError(const string& w):runtime_error(w) {} | |||||
class SocketReadError : public std::runtime_error { // Thrown if a socket read call fails. | |||||
public: SocketReadError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
class SocketWriteError : public runtime_error { // Thrown if a socket write call fails. | |||||
public: SocketWriteError(const string& w):runtime_error(w) {} | |||||
class SocketWriteError : public std::runtime_error { // Thrown if a socket write call fails. | |||||
public: SocketWriteError(const std::string& w):runtime_error(w) {} | |||||
}; | }; | ||||
static string DescriptiveError(string Msg, int Errno); // Form a descriptive error w/ errno. | |||||
static std::string DescriptiveError(std::string Msg, int Errno); // Form a descriptive error w/ errno. | |||||
Networking(); | Networking(); | ||||
~Networking(); | ~Networking(); | ||||
// End of UDPBroadcaster class | // End of UDPBroadcaster class | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
//// Include Inline methods and functions... | |||||
#include "networking.inline.hpp" | |||||
#endif | |||||
// End include Networking.hpp only once... | |||||
} // End namespace codedweller |
// networking.inline.hpp | |||||
// Copyright (C) 2006-2009 MicroNeil Research Corporation. | |||||
// | |||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
//============================================================================== | |||||
// Inlined methods for Networking module. See networking.hpp for notes. | |||||
//////////////////////////////////////////////////////////////////////////////// | |||||
// Platform Specific | |||||
//// Windows platform | |||||
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) | |||||
inline int Networking::getLastError() { // In windows you get the last error | |||||
return WSAGetLastError(); // from WSAGetLastError(); | |||||
} | |||||
inline int Networking::setNonBlocking(hSocket socket) { // Set a winsock to non-blocking | |||||
unsigned long nonblocking = 1; // Create a flag... | |||||
int result = 0; | |||||
if(0 != ioctlsocket(socket, FIONBIO, &nonblocking)) { // Set the state of the socket. | |||||
result = -1; // If that fails then return -1. | |||||
} | |||||
return result; // Show 'em my motto! | |||||
} | |||||
inline int Networking::closeSocket(hSocket socket) { // Close a socket in winsock | |||||
return closesocket(socket); // wraps closesocket(). | |||||
} | |||||
inline bool Networking::WouldBlock(int ErrorCode) { // ErrorCode matches [WSA]EWOULDBLOCK. | |||||
return (WSAEWOULDBLOCK == ErrorCode); | |||||
} | |||||
inline bool Networking::InProgress(int ErrorCode) { // ErrorCode matches [WSA]EINPROGRESS. | |||||
return( // [WSA]EALREADY also returns true. | |||||
WSAEINPROGRESS == ErrorCode || // In fact, on Win* platforms we could | |||||
WSAEALREADY == ErrorCode || // get any of these when retesting | |||||
WSAEWOULDBLOCK == ErrorCode || // open() for a connection. | |||||
WSAEINVAL == ErrorCode | |||||
); | |||||
} | |||||
inline bool Networking::IsConnected(int ErrorCode) { // ErrorCode matches [WSA]EISCONN. | |||||
return(WSAEISCONN == ErrorCode); | |||||
} | |||||
#else | |||||
//// GNU platform | |||||
inline int Networking::getLastError() { // In GNU you get the last error | |||||
return errno; // from errno; | |||||
} | |||||
inline int Networking::setNonBlocking(hSocket socket) { // Set a socket to non-blocking | |||||
int flags, result; // Grab a place to hold the flags. | |||||
flags = fcntl(socket, F_GETFL, 0); // Get the current flags. | |||||
result = fcntl(socket, F_SETFL, flags | O_NONBLOCK); // Set the NONBLOCK flag & return. | |||||
return result; // Return the result. | |||||
} | |||||
inline int Networking::closeSocket(hSocket socket) { // Close a socket in GNU | |||||
return close(socket); // wraps close(). | |||||
} | |||||
inline bool Networking::WouldBlock(int ErrorCode) { // ErrorCode matches [WSA]EWOULDBLOCK. | |||||
return (EWOULDBLOCK == ErrorCode); | |||||
} | |||||
inline bool Networking::InProgress(int ErrorCode) { // ErrorCode matches [WSA]EINPROGRESS. | |||||
return( // [WSA]EALREADY also returns true. | |||||
EINPROGRESS == ErrorCode || | |||||
EALREADY == ErrorCode | |||||
); | |||||
} | |||||
inline bool Networking::IsConnected(int ErrorCode) { // ErrorCode matches [WSA]EISCONN. | |||||
return(EISCONN == ErrorCode); | |||||
} | |||||
#endif | |||||
// End Platform Specific | |||||
//////////////////////////////////////////////////////////////////////////////// | |||||
// Begin Platform Agnostic | |||||
//// class IP4Address ////////////////////////////////////////////////////////// | |||||
inline IP4Address::IP4Address():IP(0){} // Blank constructor IP = 0.0.0.0 | |||||
inline IP4Address::IP4Address(const unsigned long int newIP):IP(newIP){} // Constructor given unsigned long | |||||
inline IP4Address::IP4Address(const IP4Address& newIP):IP(newIP.IP){} // Constructor given an IP4Address | |||||
inline IP4Address::IP4Address(const char* newIP) { (*this) = newIP; } // Construcing with a cstring. | |||||
inline IP4Address::IP4Address(const string& newIP) { (*this) = newIP; } // Constructing with a cppstring. | |||||
inline IP4Address& | |||||
IP4Address::operator=(const unsigned long int Right) { // Convert from unsigned long int. | |||||
IP = Right; | |||||
return *this; | |||||
} | |||||
inline IP4Address& IP4Address::operator=(const char* Right) { // Convert from c string. | |||||
IP = ntohl(inet_addr(Right)); | |||||
return *this; | |||||
} | |||||
inline IP4Address& IP4Address::operator=(const string& Right) { // Convert from cpp string. | |||||
IP = ntohl(inet_addr(Right.c_str())); | |||||
return *this; | |||||
} | |||||
inline bool IP4Address::operator<(const IP4Address Right) const { // < Comparison. | |||||
return (IP < Right.IP); | |||||
} | |||||
inline bool IP4Address::operator>(const IP4Address Right) const { // > Comparison. | |||||
return (IP > Right.IP); | |||||
} | |||||
inline bool IP4Address::operator==(const IP4Address Right) const { // == Comparison. | |||||
return (IP == Right.IP); | |||||
} | |||||
inline bool IP4Address::operator!=(const IP4Address Right) const { // != Comparison. | |||||
return (IP != Right.IP); | |||||
} | |||||
inline bool IP4Address::operator<=(const IP4Address Right) const { // <= Comparison. | |||||
return (IP <= Right.IP); | |||||
} | |||||
inline bool IP4Address::operator>=(const IP4Address Right) const { // >= Comparison. | |||||
return (IP >= Right.IP); | |||||
} | |||||
//// class SocketAddress /////////////////////////////////////////////////////// | |||||
inline void SocketAddress::clear() { | |||||
memset(&Address, 0, sizeof(Address)); // Zero out the address strcuture | |||||
Address.sin_family = AF_INET; // Internet Address Family ip4 | |||||
Address.sin_addr.s_addr = htonl(INADDR_ANY); // Any IP address | |||||
Address.sin_port = 0; // Zero means any port. | |||||
} | |||||
inline SocketAddress::SocketAddress() { // Constructor sets up w/ wildcards | |||||
clear(); // Conveniently, we can use clear() :-) | |||||
} | |||||
inline struct sockaddr_in* SocketAddress::getPtr_sockaddr_in() { // Returns a pointer to sockaddr_in. | |||||
return &Address; // Simply return it's address. | |||||
} | |||||
inline struct sockaddr* SocketAddress::getPtr_sockaddr() { // Returns a pointer to sockaddr. | |||||
return (struct sockaddr*) &Address; | |||||
} | |||||
inline socklen_t SocketAddress::getAddressSize() { | |||||
return sizeof(Address); // Return the size of the structure. | |||||
} | |||||
inline void SocketAddress::setAddress(unsigned long ipAddress) { // Set the IP address from an unsigned int | |||||
Address.sin_addr.s_addr = htonl(ipAddress); // Convert to network order and assign. | |||||
} | |||||
inline void SocketAddress::setAddress(char* ipString) { // Set the IP address from a cstring | |||||
Address.sin_addr.s_addr = inet_addr(ipString); // Convert to number and assign. | |||||
} | |||||
inline unsigned long SocketAddress::getAddress() { // Get the IP address as an unsigned int | |||||
return ntohl(Address.sin_addr.s_addr); // Convert to host order and return. | |||||
} | |||||
inline void SocketAddress::setPort(unsigned short port) { // Set the port address from an int | |||||
Address.sin_port = htons(port); // Convert to network order and set. | |||||
} | |||||
inline void SocketAddress::setPort(char* port) { // Set the port address from a cstring | |||||
setPort(atoi(port)); // Convert to int and set. | |||||
} | |||||
inline unsigned short SocketAddress::getPort() { // Get the port address as an unsigned int | |||||
return ntohs(Address.sin_port); // Convert to host order and return. | |||||
} | |||||
inline const char* SocketAddress::getPort(char* str) { // Get the port address into a cstring. | |||||
if(NULL == str) { // If the caller did not provide a | |||||
str = PortStringBuffer; // buffer to use then we will use ours. | |||||
} | |||||
sprintf(str,"%d",getPort()); // Get the port and convert to cstring. | |||||
return str; // Return the string we got. | |||||
} | |||||
//// class Socket ////////////////////////////////////////////////////////////// | |||||
inline Socket::Socket() : // When starting up we are | |||||
Handle(INVALID_SOCKET), OpenSucceeded(false) { // not yet valid. | |||||
} | |||||
inline Socket::~Socket() { // When shutting down, be sure | |||||
if(INVALID_SOCKET != Handle) { // any open socket is closed without | |||||
Network.closeSocket(Handle); // throwing any exceptions. | |||||
} | |||||
} | |||||
inline void Socket::close() { // When we close, | |||||
if(INVALID_SOCKET != Handle) { // If the handle is open then | |||||
if(Network.closeSocket(Handle)) { // close the handle and check for error. | |||||
LastError = Network.getLastError(); // If there was an error record it. | |||||
if(!Network.WouldBlock(LastError)) { // If the error was not WOULDBLOCK | |||||
throw Networking::ControlError( // then throw a ControlError exception. | |||||
Network.DescriptiveError( | |||||
"Socket::close()", LastError)); | |||||
} | |||||
} else { // If there was no error then | |||||
LastError = 0; // reset the LastError value. | |||||
} | |||||
Handle = INVALID_SOCKET; // and reset the handle to INVALID. | |||||
NonBlocking = false; // The default is Blocking. | |||||
OpenSucceeded = false; // After close, forget we opened. | |||||
} | |||||
} | |||||
inline hSocket Socket::getHandle() { // Returns the current Socket handle. | |||||
return Handle; | |||||
} | |||||
inline bool Socket::isNonBlocking() { // Returns true if socket is NonBlocking | |||||
return NonBlocking; | |||||
} | |||||
inline void Socket::makeNonBlocking() { // Sets the socket to NonBlocking mode. | |||||
if(0 > Network.setNonBlocking(Handle)) { // Feed the call through Network. | |||||
LastError = Network.getLastError(); // If it didn't work, go get the error. | |||||
NonBlocking = false; // We are NOT NonBlocking. | |||||
throw Networking::ControlError( // Throw a control error. | |||||
Network.DescriptiveError( | |||||
"Socket::makeNonBlocking()", LastError)); | |||||
} else { | |||||
NonBlocking = true; // If we didn't throw, we're ON. | |||||
} | |||||
} | |||||
inline bool Socket::isReuseAddress() { return ReuseAddress; } // True if socket is set SO_REUSEADDR. | |||||
inline bool Socket::isReuseAddress(bool set) { return (ReuseAddress = set); } // Changes SO_REUSEADDR setting. | |||||
inline bool Socket::isOpen() { // True if the socket is open. | |||||
return( | |||||
INVALID_SOCKET != Handle && // A valid handle and | |||||
true == OpenSucceeded // a successful open operation | |||||
); // means we're open. | |||||
} | |||||
inline int Socket::getLastError() { // Returns the last error for this socket. | |||||
return LastError; | |||||
} | |||||
//// class TCPClient /////////////////////////////////////////////////////////// | |||||
inline TCPClient::TCPClient(TCPListener& L, hSocket H, SocketAddress& A) : // How to create a TCPClient. | |||||
MyListener(L) { // Capture our listener. | |||||
Handle = H; // Capture the new socket handle. | |||||
RemoteAddress = A; // Capture the client address. | |||||
ReadPointer = ReadBuffer; // Set the read position to zero. | |||||
DataLength = 0; // There is no data yet. | |||||
OpenSucceeded = true; // We're getting an open socket. | |||||
} | |||||
inline TCPClient::~TCPClient() { // When destroying a TCPClient | |||||
try{ if(isOpen()) close(); } catch(...) {} // silently close any open connections. | |||||
} | |||||
inline void TCPClient::open() { // We provide open() as unsupported. | |||||
throw Networking::NotSupportedError( // Throw an exception if this is called. | |||||
Network.DescriptiveError( | |||||
"TCPClient::open()", LastError)); | |||||
} | |||||
inline bool TCPClient::ReadBufferIsEmpty() { // True if the ReadBuffer is empty. | |||||
return (0 >= DataLength); // We can check that with DataLength. | |||||
} | |||||
inline void TCPClient::fillReadBuffer() { // Fills the buffer from the socket. | |||||
LastError = 0; // Clear the LastError value. | |||||
ReadPointer = ReadBuffer; // Reset the ReadPointer. | |||||
DataLength = recv(Handle, ReadBuffer, sizeof(ReadBuffer), MSG_NOSIGNAL); // Try to read some data. | |||||
if(0 >= DataLength) { // If there was an error then | |||||
LastError = Network.getLastError(); // Grab the last error code. | |||||
DataLength = 0; // Correct the DataLength. | |||||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||||
return; // simply return - it's ok. | |||||
} else { // If it was a different error | |||||
throw Networking::SocketReadError( // then throw a ReadError. | |||||
Network.DescriptiveError( | |||||
"TCPClient::fillReadBuffer()", LastError)); | |||||
} | |||||
} // If we succeeded then our ReadBuffer | |||||
} // assembly is in good shape. | |||||
inline bool TCPClient::isNonBlocking() { // Provided for MessagePort. | |||||
return Socket::isNonBlocking(); | |||||
} | |||||
inline unsigned long TCPClient::getRemoteIP() { // Get remote IP as long. | |||||
return RemoteAddress.getAddress(); | |||||
} | |||||
inline const char* TCPClient::getRemoteIP(char* str) { // Get IP as string. | |||||
return RemoteAddress.getAddress(str); | |||||
} | |||||
inline unsigned short TCPClient::getRemotePort() { // Get remote Port as unsigned short. | |||||
return RemoteAddress.getPort(); | |||||
} | |||||
inline const char* TCPClient::getRemotePort(char* str) { // Get Port as string. | |||||
return RemoteAddress.getPort(str); | |||||
} | |||||
//// class TCPHost ///////////////////////////////////////////////////////////// | |||||
inline TCPHost::~TCPHost() { // When destroying a TCPHost | |||||
try{ if(isOpen()) close(); } catch(...) {} // silently close any open connection. | |||||
} | |||||
inline bool TCPHost::ReadBufferIsEmpty() { // True if the ReadBuffer is empty. | |||||
return (0 >= DataLength); // We can check that with DataLength. | |||||
} | |||||
inline void TCPHost::fillReadBuffer() { // Fills the buffer from the socket. | |||||
LastError = 0; // Clear the LastError value. | |||||
ReadPointer = ReadBuffer; // Reset the ReadPointer. | |||||
DataLength = recv(Handle, ReadBuffer, sizeof(ReadBuffer), MSG_NOSIGNAL); // Try to read some data. | |||||
if(0 >= DataLength) { // If there was an error then | |||||
LastError = Network.getLastError(); // Grab the last error code. | |||||
DataLength = 0; // Correct the DataLength. | |||||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||||
return; // simply return - it's ok. | |||||
} else { // If it was a different error | |||||
throw Networking::SocketReadError( // then throw a ReadError. | |||||
Network.DescriptiveError( | |||||
"TCPHost::fillReadBuffer()", LastError)); | |||||
} | |||||
} // If we succeeded then our ReadBuffer | |||||
} // assembly is in good shape. | |||||
inline bool TCPHost::isNonBlocking() { // Provided for MessagePort. | |||||
return Socket::isNonBlocking(); | |||||
} | |||||
//// class TCPListener ///////////////////////////////////////////////////////// | |||||
inline TCPListener::~TCPListener() { // When destroying a TCPListener | |||||
try{ close(); } catch(...) {} // silently close if not already done. | |||||
} |
// onetimepad.cpp | // onetimepad.cpp | ||||
// Copyright (C) 2006-2007 MicroNeil Research Corporation | |||||
// | |||||
// Copyright (C) 2006-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
#include "onetimepad.hpp" | #include "onetimepad.hpp" | ||||
#include "timing.hpp" | #include "timing.hpp" | ||||
#include <windows.h> | #include <windows.h> | ||||
#include <wincrypt.h> | #include <wincrypt.h> | ||||
namespace codedweller { | |||||
PadBuffer OneTimePad::Entropy(int Length) { // Get a PadBuffer full of randomness. | PadBuffer OneTimePad::Entropy(int Length) { // Get a PadBuffer full of randomness. | ||||
PadBuffer Buffer(Length, 0); // Start by initializing the buffer. | PadBuffer Buffer(Length, 0); // Start by initializing the buffer. | ||||
HCRYPTPROV provider = 0; // We will need a handle for the source. | HCRYPTPROV provider = 0; // We will need a handle for the source. | ||||
return Buffer; // Return the data we got. | return Buffer; // Return the data we got. | ||||
} | } | ||||
} // End namespace codddweller | |||||
#else | #else | ||||
//// *NIX Strong Entropy Source == /dev/urandom //////////////////////////////// | //// *NIX Strong Entropy Source == /dev/urandom //////////////////////////////// | ||||
#include <fstream> | #include <fstream> | ||||
namespace codedweller { | |||||
PadBuffer OneTimePad::Entropy(int Length) { // Get Length bytes of strong entropy. | PadBuffer OneTimePad::Entropy(int Length) { // Get Length bytes of strong entropy. | ||||
PadBuffer Buffer(Length, 0); // Initialize a buffer to hold them. | PadBuffer Buffer(Length, 0); // Initialize a buffer to hold them. | ||||
try { // Handle this in a try block. | try { // Handle this in a try block. | ||||
ifstream Source("/dev/urandom", ios::binary); // Open /dev/urandom if possible. | |||||
std::ifstream Source("/dev/urandom", std::ios::binary); // Open /dev/urandom if possible. | |||||
Source.read(reinterpret_cast<char*>(&Buffer[0]), Length); // Read data into the buffer. | Source.read(reinterpret_cast<char*>(&Buffer[0]), Length); // Read data into the buffer. | ||||
if(!Source.bad() && Source.gcount() == Length) { // If we got what we came for then | if(!Source.bad() && Source.gcount() == Length) { // If we got what we came for then | ||||
StrongEntropyFlag = true; // we have strong cryptography. | StrongEntropyFlag = true; // we have strong cryptography. | ||||
return Buffer; // Return the buffer. | return Buffer; // Return the buffer. | ||||
} | } | ||||
} // End namespace codedweller | |||||
#endif | #endif | ||||
// End Platform Specific Bits | // End Platform Specific Bits | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
namespace codedweller { | |||||
// Lightweight entropy is built from a combination of the time in ms UTC that | // Lightweight entropy is built from a combination of the time in ms UTC that | ||||
// the application was started, the number of milliseconds since that time in | // the application was started, the number of milliseconds since that time in | ||||
// milliseconds, the number and times of calls to addLightweightEntropy(), and | // milliseconds, the number and times of calls to addLightweightEntropy(), and | ||||
CombinedFill = CombinedFill ^ LightweightEntropyBuffer; // Pick up some previous state entropy. | CombinedFill = CombinedFill ^ LightweightEntropyBuffer; // Pick up some previous state entropy. | ||||
unsigned char* PrimerBuffer = (unsigned char*) &CombinedFill; // Treat the value as a bunch of bytes. | unsigned char* PrimerBuffer = (unsigned char*) &CombinedFill; // Treat the value as a bunch of bytes. | ||||
unsigned char* EntropyBuffer = (unsigned char*) &LightweightEntropyBuffer; // Likewise with the entropy buffer. | unsigned char* EntropyBuffer = (unsigned char*) &LightweightEntropyBuffer; // Likewise with the entropy buffer. | ||||
for(int i = 0; i < sizeof(msclock); i++) { // Fold bytes into the mangler one | |||||
for(size_t i = 0; i < sizeof(msclock); i++) { // Fold bytes into the mangler one | |||||
EntropyBuffer[i] += // byte at a time, capturing the | EntropyBuffer[i] += // byte at a time, capturing the | ||||
PadGenerator.Encrypt( // the results and using one extra | PadGenerator.Encrypt( // the results and using one extra | ||||
PadGenerator.Encrypt(PrimerBuffer[i])); // round per byte to increase the | PadGenerator.Encrypt(PrimerBuffer[i])); // round per byte to increase the | ||||
void OneTimePad::addEntropy() { // Add strong entropy if available. | void OneTimePad::addEntropy() { // Add strong entropy if available. | ||||
PadBuffer Fill = Entropy(); // Grab the entropy bits to add. | PadBuffer Fill = Entropy(); // Grab the entropy bits to add. | ||||
for(int i = 0; i < Fill.size(); i++) { // Pump them in one byte at a | |||||
for(size_t i = 0; i < Fill.size(); i++) { // Pump them in one byte at a | |||||
PadGenerator.Encrypt( // time and then run an extra | PadGenerator.Encrypt( // time and then run an extra | ||||
PadGenerator.Encrypt(Fill.at(i))); // round per byte to increase the | PadGenerator.Encrypt(Fill.at(i))); // round per byte to increase the | ||||
} // amount of guessing an attacker | } // amount of guessing an attacker | ||||
void OneTimePad::addEntropy(PadBuffer Entropy) { // Add entropy from a given source. | void OneTimePad::addEntropy(PadBuffer Entropy) { // Add entropy from a given source. | ||||
addLightweightEntropy(); // Start with some lightweight entropy. | addLightweightEntropy(); // Start with some lightweight entropy. | ||||
for(int i = 0; i < Entropy.size(); i++) { // Then loop through the provided | |||||
for(size_t i = 0; i < Entropy.size(); i++) { // Then loop through the provided | |||||
PadGenerator.Encrypt( // entropy and mix it in with one | PadGenerator.Encrypt( // entropy and mix it in with one | ||||
PadGenerator.Encrypt(Entropy.at(i))); // extra round per byte to increase | PadGenerator.Encrypt(Entropy.at(i))); // extra round per byte to increase | ||||
} // the amount of guessing an attacker | } // the amount of guessing an attacker | ||||
} // initial Mangler state. | } // initial Mangler state. | ||||
} // The OneTimePad object is ready. | } // The OneTimePad object is ready. | ||||
} // End namespace codedweller |
// onetimepad.hpp | // onetimepad.hpp | ||||
// Copyright (C) 2006 - 2007 MicroNeil Research Corporation | |||||
// | |||||
// Copyright (C) 2006-2020 MicroNeil Research Corporation. | |||||
// | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | // | ||||
// This module leverages the Mangler encryption engine to create | // This module leverages the Mangler encryption engine to create | ||||
// cryptographically strong one-time pads and random numbers upon request. | // cryptographically strong one-time pads and random numbers upon request. | ||||
// started. Additional entropy can be provided by the application or again from | // started. Additional entropy can be provided by the application or again from | ||||
// one of the core entropy generators (/dev/urandom or CryptGenRandom). | // one of the core entropy generators (/dev/urandom or CryptGenRandom). | ||||
#ifndef onetimepad_included | |||||
#define onetimepad_included | |||||
#pragma once | |||||
#include <vector> | #include <vector> | ||||
#include "mangler.hpp" | #include "mangler.hpp" | ||||
using namespace std; | |||||
namespace codedweller { | |||||
typedef vector<unsigned char> PadBuffer; | |||||
typedef std::vector<unsigned char> PadBuffer; | |||||
class OneTimePad { // One Time Pad generator. | class OneTimePad { // One Time Pad generator. | ||||
private: | private: | ||||
}; | }; | ||||
#endif | |||||
} // End namespace codedweller |
// threading.cpp | // threading.cpp | ||||
// | // | ||||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||||
// Copyright (C) 2006-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// For details on the Threading module and development history see threading.hpp | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
#include "threading.hpp" | #include "threading.hpp" | ||||
using namespace std; // Introduce std namespace. | |||||
namespace codedweller { | |||||
ThreadManager Threads; // Master thread manager. | ThreadManager Threads; // Master thread manager. | ||||
ScopeMutex ThereCanBeOnlyOne(MyMutex); // Protect our set -- a moment in time. | ScopeMutex ThereCanBeOnlyOne(MyMutex); // Protect our set -- a moment in time. | ||||
ThreadStatusReport Answer; // Create our vector to hold the report. | ThreadStatusReport Answer; // Create our vector to hold the report. | ||||
for( // Loop through all of the Threads. | for( // Loop through all of the Threads. | ||||
set<Thread*>::iterator iT = KnownThreads.begin(); | |||||
std::set<Thread*>::iterator iT = KnownThreads.begin(); | |||||
iT != KnownThreads.end(); iT++ | iT != KnownThreads.end(); iT++ | ||||
) { // Grab each Threads' report. | ) { // Grab each Threads' report. | ||||
Thread& X = *(*iT); // Handy reference to the Thread. | Thread& X = *(*iT); // Handy reference to the Thread. | ||||
bool Thread::isBad() { return BadFlag; } // Return BadFlag state. | bool Thread::isBad() { return BadFlag; } // Return BadFlag state. | ||||
const string Thread::MyFault() { return BadWhat; } // Return exception Bad fault if any. | |||||
const string Thread::MyName() { return MyThreadName; } // Return the instance name if any. | |||||
const std::string Thread::MyFault() { return BadWhat; } // Return exception Bad fault if any. | |||||
const std::string Thread::MyName() { return MyThreadName; } // Return the instance name if any. | |||||
const ThreadType& Thread::MyType() { return MyThreadType; } // Return the instance Thread Type. | const ThreadType& Thread::MyType() { return MyThreadType; } // Return the instance Thread Type. | ||||
const ThreadState& Thread::MyState() { return (*MyThreadState); } // Thread state for this instance. | const ThreadState& Thread::MyState() { return (*MyThreadState); } // Thread state for this instance. | ||||
CurrentThreadState(ThreadStarted); // Set the running state. | CurrentThreadState(ThreadStarted); // Set the running state. | ||||
myTask(); // myTask() is called. | myTask(); // myTask() is called. | ||||
} // myTask() should handle exceptions. | } // myTask() should handle exceptions. | ||||
catch(exception& e) { // Unhandled exceptions are informative: | |||||
catch(const std::exception& e) { // Unhandled exceptions are informative: | |||||
BadFlag = true; // They mean the thread went bad but | BadFlag = true; // They mean the thread went bad but | ||||
BadWhat = e.what(); // we have an idea what went wrong. | BadWhat = e.what(); // we have an idea what went wrong. | ||||
} // We shouldn't get other kinds of | } // We shouldn't get other kinds of | ||||
CurrentThreadState(ThreadInitialized); // Set our initialized state. | CurrentThreadState(ThreadInitialized); // Set our initialized state. | ||||
} | } | ||||
Thread::Thread(const ThreadType& T, const string N) : // Construct with specific Type/Name | |||||
Thread::Thread(const ThreadType& T, const std::string N) : // Construct with specific Type/Name | |||||
MyThreadType(T), // Use generic Thread Type. | MyThreadType(T), // Use generic Thread Type. | ||||
MyThreadName(N), // Use a generic Thread Name. | MyThreadName(N), // Use a generic Thread Name. | ||||
MyThread(NULL), // Null the thread handle. | MyThread(NULL), // Null the thread handle. | ||||
CurrentThreadState(ThreadInitialized); // Set our initialized state. | CurrentThreadState(ThreadInitialized); // Set our initialized state. | ||||
} | } | ||||
Thread::Thread(const ThreadType& T, const string N) : // POSIX Specific Thread Constructor. | |||||
Thread::Thread(const ThreadType& T, const std::string N) : // POSIX Specific Thread Constructor. | |||||
MyThreadType(T), // Use a generic Thread Type. | MyThreadType(T), // Use a generic Thread Type. | ||||
MyThreadName(N), // Use a generic Thread Name. | MyThreadName(N), // Use a generic Thread Name. | ||||
RunningFlag(false), // Can't be running yet. | RunningFlag(false), // Can't be running yet. | ||||
// End Production Gateway | // End Production Gateway | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
} // End namespace codedweller |
// threading.hpp | // threading.hpp | ||||
// | // | ||||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// The "Threading" module is a basic, cross-platform, multi-threading tool kit. | // The "Threading" module is a basic, cross-platform, multi-threading tool kit. | ||||
// The differences between posix compatible systems and win32 based systems are | // The differences between posix compatible systems and win32 based systems are | ||||
// here are designed to cover all of the basics efficiently while hiding the | // here are designed to cover all of the basics efficiently while hiding the | ||||
// required under-cover work. | // required under-cover work. | ||||
// A lot of this module is coded here in the header with the inline keyword | |||||
// because it is likely that the more basic objects can be efficiently compiled | |||||
// as inline abstractions to native calls. Really basic systems won't need | |||||
// anything beyond what is in this file. | |||||
// 20070202.1601 _M Further research has suggested that using a Semaphore in | |||||
// WIN32 environments in place of a CRITICAL_SECTION may provide the best | |||||
// performance and stability on all platforms. Specifically, SMP platforms may | |||||
// race and waste resources with CRITICAL_SECTIONs and in those cases it is | |||||
// recommended that the CRITICAL_SECTIONs may be "throttled" using Semaphores | |||||
// to limit the number of threads that may contend for a critical section. It | |||||
// is also suggested that if the Semaphore has an initialization value of 1 | |||||
// the CRITICAL_SECTION is redundant. So this code has been modified to do | |||||
// precisely that! | |||||
// | |||||
// This new version also includes a ProductionGateway object that simplifies | |||||
// the producer/consumer model. The object keeps track of the number of calls | |||||
// to produce() and consume() and ensures that threads will block on consume() | |||||
// until a sufficient number of calls to produce() are made. That is, for every | |||||
// one call to produce(), a call to consume() will be allowed to proceed. The | |||||
// object also allows for the potentially asynchronous nature of these calls. | |||||
// 20070530.1751 _M Added top level exception handling in threads along with | |||||
// isRunning() and isBad() methods. | |||||
// 20060528.1647 _M All of the basics are complete and tested on both WIN32 and | |||||
// RHEL4 single and multiple processors. | |||||
// Include MNR_threading Once Only ============================================= | |||||
#ifndef MNR_threading | |||||
#define MNR_threading | |||||
#pragma once | |||||
#include <set> | #include <set> | ||||
#include <vector> | #include <vector> | ||||
#include <string> | #include <string> | ||||
#include <queue> | |||||
#include "faults.hpp" | |||||
#include <queue> | |||||
#include "faults.hpp" | |||||
using namespace std; | |||||
namespace codedweller { | |||||
class ThreadManager; // ThreadManager does exist. | class ThreadManager; // ThreadManager does exist. | ||||
extern ThreadManager Threads; // Master thread manager. | extern ThreadManager Threads; // Master thread manager. | ||||
class ThreadState { // Thread State Object. | class ThreadState { // Thread State Object. | ||||
public: | public: | ||||
const string Name; // Text name of thread descriptor. | |||||
ThreadState(string N) : Name(N) {} // Constructor requires text name. | |||||
const std::string Name; // Text name of thread descriptor. | |||||
ThreadState(std::string N) : Name(N) {} // Constructor requires text name. | |||||
}; | }; | ||||
// ThreadType objects are constant static objects defined for each Thread class | // ThreadType objects are constant static objects defined for each Thread class | ||||
class ThreadType { | class ThreadType { | ||||
public: | public: | ||||
const string Name; | |||||
ThreadType(string N) : Name(N) {} | |||||
const std::string Name; | |||||
ThreadType(std::string N) : Name(N) {} | |||||
}; | }; | ||||
class Thread; // There is such thing as a Thread. | class Thread; // There is such thing as a Thread. | ||||
Thread* Pointer; // A pointer to the thread. | Thread* Pointer; // A pointer to the thread. | ||||
ThreadType* Type; // A descriptor of it's type. | ThreadType* Type; // A descriptor of it's type. | ||||
ThreadState* State; // A descriptor of it's state. | ThreadState* State; // A descriptor of it's state. | ||||
string Name; // Name of the thread if any. | |||||
std::string Name; // Name of the thread if any. | |||||
bool isRunning; // True if the thread is running. | bool isRunning; // True if the thread is running. | ||||
bool isBad; // True if the thread is bad. | bool isBad; // True if the thread is bad. | ||||
string Fault; // Bad Thread's Fault if any. | |||||
std::string Fault; // Bad Thread's Fault if any. | |||||
public: | public: | ||||
ThreadStatusRecord( // Initialize all items. | ThreadStatusRecord( // Initialize all items. | ||||
ThreadState& S, | ThreadState& S, | ||||
bool R, | bool R, | ||||
bool B, | bool B, | ||||
string F, | |||||
string N | |||||
std::string F, | |||||
std::string N | |||||
) : | ) : | ||||
Pointer(P), | Pointer(P), | ||||
Type(&T), | Type(&T), | ||||
State(&S), | State(&S), | ||||
Name(N), | |||||
Name(N), | |||||
isRunning(R), | isRunning(R), | ||||
isBad(B), | isBad(B), | ||||
Fault(F) | Fault(F) | ||||
isRunning = Right.isRunning; | isRunning = Right.isRunning; | ||||
isBad = Right.isBad; | isBad = Right.isBad; | ||||
Fault = Right.Fault; | Fault = Right.Fault; | ||||
Name = Right.Name; | |||||
Name = Right.Name; | |||||
return *this; | return *this; | ||||
} | } | ||||
const ThreadState& getState() { return *State; } | const ThreadState& getState() { return *State; } | ||||
bool getRunning() { return isRunning; } | bool getRunning() { return isRunning; } | ||||
bool getBad() { return isBad; } | bool getBad() { return isBad; } | ||||
string getFault() { return Fault; } | |||||
string getName() { return Name; } | |||||
std::string getFault() { return Fault; } | |||||
std::string getName() { return Name; } | |||||
}; | }; | ||||
typedef vector<ThreadStatusRecord> ThreadStatusReport; // Status report type. | |||||
typedef std::vector<ThreadStatusRecord> ThreadStatusReport; // Status report type. | |||||
// End ThreadDescriptor | // End ThreadDescriptor | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
} // End namespace codedweller | |||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
// Win32 / POSIX abstractions | // Win32 / POSIX abstractions | ||||
#include <windows.h> | #include <windows.h> | ||||
#include <process.h> | #include <process.h> | ||||
namespace codedweller { | |||||
typedef HANDLE thread_primative; // The WIN32 thread primative abstracts | typedef HANDLE thread_primative; // The WIN32 thread primative abstracts | ||||
// HANDLE | // HANDLE | ||||
SwitchToThread(); // we call SwitchToThread(); | SwitchToThread(); // we call SwitchToThread(); | ||||
} | } | ||||
} // End namespace codedweller | |||||
#else | #else | ||||
// When in POSIX land... | // When in POSIX land... | ||||
#include <pthread.h> | #include <pthread.h> | ||||
#include <sched.h> | #include <sched.h> | ||||
namespace codedweller { | |||||
typedef pthread_t thread_primative; // The POSIX thread primative abstracts | typedef pthread_t thread_primative; // The POSIX thread primative abstracts | ||||
// pthread_t | // pthread_t | ||||
sched_yield(); // we call sched_yield(); | sched_yield(); // we call sched_yield(); | ||||
} | } | ||||
} // End namespace codedweller | |||||
#endif | #endif | ||||
// End Win32 / POSIX abstractions | // End Win32 / POSIX abstractions | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
namespace codedweller { | |||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
// The Thread class gets extended to do any specific work. The pure virtual | // The Thread class gets extended to do any specific work. The pure virtual | ||||
// function MyTask is overloaded by the derived class to define that work. It | // function MyTask is overloaded by the derived class to define that work. It | ||||
protected: | protected: | ||||
const ThreadType& MyThreadType; // Identify thread type. | const ThreadType& MyThreadType; // Identify thread type. | ||||
const string MyThreadName; // Name string of this instance. | |||||
const std::string MyThreadName; // Name string of this instance. | |||||
thread_primative MyThread; // Abstracted thread. | thread_primative MyThread; // Abstracted thread. | ||||
bool RunningFlag; // True when thread is in myTask() | bool RunningFlag; // True when thread is in myTask() | ||||
bool BadFlag; // True when myTask() throws! | bool BadFlag; // True when myTask() throws! | ||||
string BadWhat; // Bad exception what() if any. | |||||
std::string BadWhat; // Bad exception what() if any. | |||||
void CurrentThreadState(const ThreadState& TS); // Set thread state. | void CurrentThreadState(const ThreadState& TS); // Set thread state. | ||||
public: | public: | ||||
Thread(); // Constructor (just in case) | Thread(); // Constructor (just in case) | ||||
Thread(const ThreadType& T, string N); // Construct with specific Type/Name | |||||
Thread(const ThreadType& T, std::string N); // Construct with specific Type/Name | |||||
virtual ~Thread(); // Destructor (just in case) | virtual ~Thread(); // Destructor (just in case) | ||||
void run(); // Method to launch this thread. | void run(); // Method to launch this thread. | ||||
bool isRunning(); // Return the Running flag state. | bool isRunning(); // Return the Running flag state. | ||||
bool isBad(); // Return the Bad flag state. | bool isBad(); // Return the Bad flag state. | ||||
const string MyFault(); // Return exception Bad fault if any. | |||||
const std::string MyFault(); // Return exception Bad fault if any. | |||||
const string MyName(); // The thread's name. | |||||
const std::string MyName(); // The thread's name. | |||||
const ThreadType& MyType(); // Thread type for this thread. | const ThreadType& MyType(); // Thread type for this thread. | ||||
const ThreadState& MyState(); // Returns the current thread state. | const ThreadState& MyState(); // Returns the current thread state. | ||||
const ThreadState& CurrentThreadState(); // Returns the current thread state. | const ThreadState& CurrentThreadState(); // Returns the current thread state. | ||||
private: | private: | ||||
Mutex MyMutex; // Protect our data with this. | Mutex MyMutex; // Protect our data with this. | ||||
set<Thread*> KnownThreads; // Keep track of all threads. | |||||
std::set<Thread*> KnownThreads; // Keep track of all threads. | |||||
void rememberThread(Thread* T); // Threads register themselves. | void rememberThread(Thread* T); // Threads register themselves. | ||||
void forgetThread(Thread* T); // Threads remove themselves. | void forgetThread(Thread* T); // Threads remove themselves. | ||||
// End Thread Manager | // End Thread Manager | ||||
//////////////////////////////////////////////////////////////////////////////// | //////////////////////////////////////////////////////////////////////////////// | ||||
//////////////////////////////////////////////////////////////////////////////// | |||||
// A ProductionQueue is a templated, thread safe mechanism for implementing | |||||
// a producer/consumer relationship. The objects in the queue should be simple | |||||
// data so that they can be created, destroyed, and copied without trouble. Put | |||||
// another way - the objects in the ProductionQueue should be lightweight | |||||
// handles for other things. Those things should be created and destroyed | |||||
// elsewhere. | |||||
template<typename T> // Templatized | |||||
class ProductionQueue { // Production Queue Class | |||||
private: | |||||
Mutex myMutex; // Contains a mutex and | |||||
volatile unsigned int LatestSize; // a volatile (blinking light) size | |||||
ProductionGateway myGateway; // integrated with a production | |||||
queue<T> myQueue; // gateway and a queue. | |||||
public: | |||||
ProductionQueue() : LatestSize(0) {} // The size always starts at zero. | |||||
T take() { // To consume a queued object | |||||
myGateway.consume(); // we wait on the production gateway | |||||
ScopeMutex OneAtATimePlease(myMutex); // and when we get through we lock | |||||
T O = myQueue.front(); // the mutext, take the object on the | |||||
myQueue.pop(); // front of the queue, pop it out, | |||||
LatestSize = myQueue.size(); // and rest our size (blinking light). | |||||
return O; // Then return the object we got. | |||||
} | |||||
void give(T O) { // To produce a queued object | |||||
ScopeMutex OneAtATimePlease(myMutex); // we wait on the mutex. When we | |||||
myQueue.push(O); // get through we push our object | |||||
LatestSize = myQueue.size(); // into the queue, reset our size | |||||
myGateway.produce(); // indicator and tell the gateway. | |||||
} // When we're done it can be grabbed. | |||||
unsigned int size() { // To check the size we look at | |||||
return LatestSize; // the blinking light. | |||||
} | |||||
}; | |||||
// End Production Queue | |||||
//////////////////////////////////////////////////////////////////////////////// | |||||
#endif | |||||
//////////////////////////////////////////////////////////////////////////////// | |||||
// A ProductionQueue is a templated, thread safe mechanism for implementing | |||||
// a producer/consumer relationship. The objects in the queue should be simple | |||||
// data so that they can be created, destroyed, and copied without trouble. Put | |||||
// another way - the objects in the ProductionQueue should be lightweight | |||||
// handles for other things. Those things should be created and destroyed | |||||
// elsewhere. | |||||
template<typename T> // Templatized | |||||
class ProductionQueue { // Production Queue Class | |||||
private: | |||||
Mutex myMutex; // Contains a mutex and | |||||
volatile unsigned int LatestSize; // a volatile (blinking light) size | |||||
ProductionGateway myGateway; // integrated with a production | |||||
std::queue<T> myQueue; // gateway and a queue. | |||||
public: | |||||
ProductionQueue() : LatestSize(0) {} // The size always starts at zero. | |||||
T take() { // To consume a queued object | |||||
myGateway.consume(); // we wait on the production gateway | |||||
ScopeMutex OneAtATimePlease(myMutex); // and when we get through we lock | |||||
T O = myQueue.front(); // the mutext, take the object on the | |||||
myQueue.pop(); // front of the queue, pop it out, | |||||
LatestSize = myQueue.size(); // and rest our size (blinking light). | |||||
return O; // Then return the object we got. | |||||
} | |||||
void give(T O) { // To produce a queued object | |||||
ScopeMutex OneAtATimePlease(myMutex); // we wait on the mutex. When we | |||||
myQueue.push(O); // get through we push our object | |||||
LatestSize = myQueue.size(); // into the queue, reset our size | |||||
myGateway.produce(); // indicator and tell the gateway. | |||||
} // When we're done it can be grabbed. | |||||
unsigned int size() { // To check the size we look at | |||||
return LatestSize; // the blinking light. | |||||
} | |||||
}; | |||||
// End Production Queue | |||||
//////////////////////////////////////////////////////////////////////////////// | |||||
// End Of Include MNR_threading Once Only ====================================== | |||||
} // End namespace codedweller |
// timing.cpp | // timing.cpp | ||||
// | // | ||||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation. | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// See the corresponding .hpp file for descriptions and history. | |||||
// | |||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// | |||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// | |||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
#include <ctime> | #include <ctime> | ||||
#include <sys/time.h> | #include <sys/time.h> | ||||
#include "timing.hpp" | #include "timing.hpp" | ||||
// Introduce the standard namespace //////////////////////////////////////////// | |||||
using namespace std; | |||||
namespace codedweller { | |||||
/////////////////////////////////////////////////////////////////////////////// | /////////////////////////////////////////////////////////////////////////////// | ||||
// class Sleeper - An object that remembers how long it is supposed to sleep. | // class Sleeper - An object that remembers how long it is supposed to sleep. | ||||
if(x < MinimumSleeperTime || | if(x < MinimumSleeperTime || | ||||
x > MaximumSleeperTime) // If it's not a good time value | x > MaximumSleeperTime) // If it's not a good time value | ||||
throw BadSleeperValue(); // then throw the exception. | throw BadSleeperValue(); // then throw the exception. | ||||
MillisecondsToSleep = x; // If it is good - set it. | |||||
MillisecondsToSleep = x; // If it is good - set it. | |||||
return MillisecondsToSleep; // Return the set value. | return MillisecondsToSleep; // Return the set value. | ||||
} | } | ||||
// a natural spiral. | // a natural spiral. | ||||
/////////////////////////////////////////////////////////////////////////////// | /////////////////////////////////////////////////////////////////////////////// | ||||
PollTimer::PollTimer(int Nom, int Max) : | |||||
NominalPollTime(MinimumSleeperTime), | |||||
PollTimer::PollTimer(int Nom, int Max) : | |||||
NominalPollTime(MinimumSleeperTime), | |||||
MaximumPollTime(MinimumSleeperTime) { // Construction requires a | MaximumPollTime(MinimumSleeperTime) { // Construction requires a | ||||
setNominalPollTime(Nom); // nominal delay to use and | setNominalPollTime(Nom); // nominal delay to use and | ||||
setMaximumPollTime(Max); // a maximum delay to allow. | setMaximumPollTime(Max); // a maximum delay to allow. | ||||
bool Timeout::isExpired() { // Return true if time is up. | bool Timeout::isExpired() { // Return true if time is up. | ||||
return (!(myTimer.getElapsedTime() < myDuration)); // Check the elapsed time against myDuration. | return (!(myTimer.getElapsedTime() < myDuration)); // Check the elapsed time against myDuration. | ||||
} | } | ||||
} // End namespace codedweller |
// timing.hpp | // timing.hpp | ||||
// | // | ||||
// Copyright (C) 2004-2009 MicroNeil Research Corporation. | |||||
// This program is part of the MicroNeil Research Open Library Project. For | |||||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||||
// | |||||
// This program is free software; you can redistribute it and/or modify it | |||||
// under the terms of the GNU General Public License as published by the | |||||
// Free Software Foundation; either version 2 of the License, or (at your | |||||
// option) any later version. | |||||
// Copyright (C) 2004-2020 MicroNeil Research Corporation. | |||||
// | // | ||||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||||
// more details. | |||||
// This software is released under the MIT license. See LICENSE.TXT. | |||||
// | // | ||||
// You should have received a copy of the GNU General Public License along with | |||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||||
// The purpose of this module is to abstract timing functions for | // The purpose of this module is to abstract timing functions for | ||||
// cross platform C++ development usning GNU compilers in *nix and | // cross platform C++ development usning GNU compilers in *nix and | ||||
// win32 environments (minGW). Timing resolution is in milliseconds | // win32 environments (minGW). Timing resolution is in milliseconds | ||||
// throughout to provide consistency and reasonable expectations. | // throughout to provide consistency and reasonable expectations. | ||||
// 20060404 _M Added Timer::start(msclock startt) for chaining. | |||||
// 20060403 _M This "timing" module has been completed and tested on | |||||
// win32 (compiled using CodeBlocks and minGW) and on RHES3 (g++). | |||||
// | |||||
// The bottom line is that this code is perfect for most applications that | |||||
// don't need real-time interaction on the win32 platform. That is, for | |||||
// any application that can accept 15ms or so of "wiggle" in their timing | |||||
// functions. On linux I was able to observe very consistent results with | |||||
// variations measured in 1-2ms. | |||||
// | |||||
// Aynone seeking real-time accuracy on the win32 platform will need to contend | |||||
// with all of the landmines in place against that and will need to write more | |||||
// ellaborate versions of Timer::getLocalRawClock() and Sleeper::doRawSleep() | |||||
// aa appropriate for their application. The existing code should work fine for | |||||
// almost all other applications. | |||||
// | |||||
// This code was written with that in mind to some extent. That is why all of | |||||
// the timing functions are measured in milliseconds rather than microseconds | |||||
// or something smaller. Milliseconds are convenient for polling delays, | |||||
// communications timeouts, measuring database application performance, and | |||||
// other similar tasks. For that purpose - this timing module is just fine :-) | |||||
// 20060323 _M Rewrote this module from a combination of previous | |||||
// bits and pieces. This module will provide classes that abstract | |||||
// timing functions for use in GNU projects on *nix and win32 systems. | |||||
#ifndef MNR_timing | |||||
#define MNR_timing | |||||
// Introduce the standard namespace /////////////////////////////////////////// | |||||
#pragma once | |||||
using namespace std; | |||||
namespace codedweller { | |||||
/////////////////////////////////////////////////////////////////////////////// | /////////////////////////////////////////////////////////////////////////////// | ||||
// class Sleeper - An object that remembers how long it is supposed to sleep. | // class Sleeper - An object that remembers how long it is supposed to sleep. | ||||
private: | private: | ||||
bool RunningFlag; // True if clock is running. | |||||
bool RunningFlag; // True if clock is running. | |||||
msclock StartTime; // TimeOfDay at start. | msclock StartTime; // TimeOfDay at start. | ||||
msclock StopTime; // TimeOfDay at stop or check. | msclock StopTime; // TimeOfDay at stop or check. | ||||
** Returns true if time is up. | ** Returns true if time is up. | ||||
*/ | */ | ||||
#endif // End MNR_timing once-only switch. | |||||
} // End namespace codedweller |