git-svn-id: https://svn.microneil.com/svn/CodeDweller/trunk@1 d34b734f-a00e-4b39-a726-e4eeb87269abwx
@@ -0,0 +1,34 @@ | |||
## Process this file with automake to produce Makefile.in | |||
## | |||
## $Id$ | |||
## | |||
## | |||
## Author: Alban Deniz | |||
## | |||
## Copyright (C) 2008 by MicroNeil Corporation. All rights reserved. | |||
## | |||
CXXFLAGS = $(SNF_CXXFLAGS) | |||
noinst_LIBRARIES = \ | |||
libCodeDweller.a | |||
libCodeDweller_a_SOURCES = \ | |||
@top_srcdir@/CodeDweller/base64codec.cpp \ | |||
@top_srcdir@/CodeDweller/configuration.cpp \ | |||
@top_srcdir@/CodeDweller/networking.cpp \ | |||
@top_srcdir@/CodeDweller/threading.cpp \ | |||
@top_srcdir@/CodeDweller/timing.cpp | |||
noinst_HEADERS = \ | |||
@top_srcdir@/CodeDweller/base64codec.hpp \ | |||
@top_srcdir@/CodeDweller/configuration.hpp \ | |||
@top_srcdir@/CodeDweller/configuration.inline.hpp \ | |||
@top_srcdir@/CodeDweller/histogram.hpp \ | |||
@top_srcdir@/CodeDweller/networking.hpp \ | |||
@top_srcdir@/CodeDweller/networking.inline.hpp \ | |||
@top_srcdir@/CodeDweller/threading.hpp \ | |||
@top_srcdir@/CodeDweller/timing.hpp | |||
clean-local: | |||
rm -f *.gcno *.gcov *.gcda *~ |
@@ -0,0 +1,276 @@ | |||
// base64codec.cpp | |||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation | |||
// See base64codec.hpp | |||
//typedef vector<char> base64codec_buffer; | |||
//typedef vector<char>::iterator base64codec_iterator; | |||
#include "base64codec.hpp" | |||
namespace base64codec { | |||
char base64encode[65] = // Base64 encoding characters. | |||
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |||
// The following table makes conversion fast because it's all lookups. The | |||
// special value XX64 is used everywhere a bad byte is found in the table. | |||
const static unsigned char XXXX = 0xFF; // Bad base64 character. | |||
const static unsigned char PAD0 = 0xFE; // Pad base64 character. | |||
const static unsigned char IGNR = 0xFD; // Ingoreable base64 character. | |||
const static unsigned char STOP = 0xFC; // STOP -- all done. | |||
// Note the special case '=' is used for pad. It is given the value 0xFE. | |||
// Also the IGNR case is any whitespace (Tab, CR, NL) that can be ignored. | |||
// The input to this table is the incoming byte. The output is either XX64 | |||
// or a valid base64 numerical value. | |||
const static unsigned char base64decode[256] = { | |||
// 0 1 2 3 4 5 6 7 8 9 A B C D E F | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,IGNR,IGNR,XXXX,XXXX,IGNR,XXXX,XXXX, // 0 | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // 1 | |||
IGNR,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,0x3E,XXXX,XXXX,XXXX,0x3F, // 2 | |||
0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,0x3C,0x3D,XXXX,XXXX,XXXX,PAD0,XXXX,XXXX, // 3 | |||
XXXX,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E, // 4 | |||
0x0F,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,XXXX,XXXX,XXXX,XXXX,XXXX, // 5 | |||
XXXX,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28, // 6 | |||
0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31,0x32,0x33,XXXX,XXXX,XXXX,XXXX,XXXX, // 7 | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // 8 | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // 9 | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // A | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // B | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // C | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // D | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX, // E | |||
XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX,XXXX // F | |||
}; | |||
} // End namespace base64codec | |||
using namespace base64codec; | |||
//// to_base64 ///////////////////////////////////////////////////////////////// | |||
void to_base64::convert(const unsigned char* bfr, const int len) { // Converts from a char buffer. | |||
if(NULL == bfr || 0 >= len) { // If there's NULL or no length | |||
BadConversion = true; // that was a bad conversion. | |||
return; // lets get out of here. | |||
} | |||
int NewSize = (len / 3) * 4; // Base64 takes 4 bytes for every 3; | |||
if(0 < len % 3) NewSize += 4; // If there are more, add an other 4; | |||
reserve(NewSize); // Set aside enough memory for the job. | |||
int cursor = 0; // Starting at zero chunk it off. | |||
while(len > cursor) { | |||
// Chunk off 4 bytes into an unsigned int for conversion. | |||
enum EndGames { // Describe the end game for this | |||
OneByte, // chunk as containing either one, | |||
TwoBytes, // two, | |||
ThreeBytes // or three bytes. | |||
} EndGame; // We use this to code the end. | |||
// Byte 0 | |||
unsigned long REGISTER = 0; // Start with a clear register. | |||
REGISTER += bfr[cursor]; REGISTER <<= 8; ++cursor; // Load Byte 0. | |||
EndGame = OneByte; // We've added a byte. | |||
// Byte 1 | |||
if(len > cursor) { // If we've got bytes left. | |||
REGISTER += bfr[cursor]; // load the next one and | |||
++cursor; // move the cursor. | |||
EndGame = TwoBytes; // We're up to 2 bytes. | |||
} | |||
REGISTER <<= 8; // Shift to the next byte. | |||
// Byte 2 | |||
if(len > cursor) { // If we've got bytes left. | |||
REGISTER += bfr[cursor]; // load the next one and | |||
++cursor; // move the cursor. | |||
EndGame = ThreeBytes; // That's a full house. | |||
} | |||
// No shift this time, the register is full ;-) | |||
// Now that we have 3 bytes and a characterization we can encode the | |||
// base64 bytes into our vector. | |||
const int SixBitMask = 0x0000003f; // This is how far to shift. | |||
char code3 = base64encode[(REGISTER & SixBitMask)]; REGISTER >>= 6; // Encode four characters for this | |||
char code2 = base64encode[(REGISTER & SixBitMask)]; REGISTER >>= 6; // three bytes. | |||
char code1 = base64encode[(REGISTER & SixBitMask)]; REGISTER >>= 6; | |||
char code0 = base64encode[(REGISTER & SixBitMask)]; | |||
push_back(code0); // Push the first 2 encoded bytes onto | |||
push_back(code1); // the vector in the original order. | |||
switch(EndGame) { // Now handle the end game. | |||
case OneByte: { // If the end contains one valid byte | |||
push_back('='); // push back two = to indicate that | |||
push_back('='); // the last two bytes are padding. | |||
break; | |||
} | |||
case TwoBytes: { // If the end contains two valid bytes | |||
push_back(code2); // push back one more code byte and | |||
push_back('='); // push back only one = indicating one | |||
break; // byte of padding. | |||
} | |||
case ThreeBytes: // If we had the full three bytes to | |||
default: { // work with then we have no padding. | |||
push_back(code2); // Push back the remaining two | |||
push_back(code3); // code bytes to capture the full | |||
break; // encoding. This also works | |||
} // in the middle of the input. | |||
} // That's it for the end game. | |||
} // That's it for this chunk. | |||
BadConversion = false; // If we get here we've done good. | |||
} | |||
to_base64::to_base64(const vector<unsigned char>& bfr) : // Converts from a base64buffer. | |||
BadConversion(true) { // No conversion yet ;-) | |||
convert(&bfr[0], bfr.size()); // Recast the pointer and do it. | |||
} | |||
to_base64::to_base64(const vector<char>& bfr) : // Converts from a base64codec buffer. | |||
BadConversion(true) { // No conversion yet ;-) | |||
convert(reinterpret_cast<const unsigned char*>(&bfr[0]), bfr.size()); // Do this to get it done. | |||
} | |||
to_base64::to_base64(const unsigned char* bfr, const int len) : // Converts from a uchar buffer. | |||
BadConversion(true) { // No conversion yet ;-) | |||
convert(bfr, len); // Do this to get it done. | |||
} | |||
to_base64::to_base64(const char* bfr, const int len) : // Converts from a char buffer. | |||
BadConversion(true) { // No conversion yet ;-) | |||
convert(reinterpret_cast<const unsigned char*>(bfr), len); // Do this to get it done. | |||
} | |||
to_base64::to_base64(const string& s) : // Converts from a c++ string. | |||
BadConversion(true) { // No conversion yet ;-) | |||
convert(reinterpret_cast<const unsigned char*>(s.c_str()), s.length()); // Do this to get it done. | |||
} | |||
to_base64::to_base64(const char* s) : // Converts from a c string. | |||
BadConversion(true) { // No conversion yet ;-) | |||
convert(reinterpret_cast<const unsigned char*>(s), strlen(s)); // Do this to get it done. | |||
} | |||
bool to_base64::Bad() { // Look at the flag. | |||
return BadConversion; | |||
} | |||
//// from_base64 /////////////////////////////////////////////////////////////// | |||
unsigned char from_base64::NextSixBits( // Get the next base64 byte. | |||
int& cursor, | |||
const unsigned char* bfr, | |||
const int len) { | |||
while(len > cursor) { // Prepare to eat IGNR chars. | |||
unsigned char c = base64decode[bfr[cursor]]; // Get the next 6 bits. | |||
++cursor; // Move the cursor for next time. | |||
if(IGNR == c) continue; // If we should ignore it, eat. | |||
if(XXXX == c) return c; // If it's bad, return it. | |||
return c; // If it's ordinary return it. | |||
} // If we run out of bytes | |||
return STOP; // return STOP | |||
} | |||
//// Since the BadConversion flag is set on construction, if we bail out | |||
//// of the convert() for any reason then the conversion will be bad. | |||
void from_base64::convert(const unsigned char* bfr, const int len) { // Converts bfr from base64 to plaintext. | |||
if(NULL == bfr || 0 >= len) { return; } // If there's nothing to do return bad. | |||
// Estimate our conversion buffer size. | |||
int NewSize = len / 4 * 3; // Four bytes of base64 could be 3 bytes. | |||
reserve(NewSize); // Reserve that much space for speed. | |||
// Start the conversion process. | |||
int cursor = 0; | |||
while(len > cursor) { // Go through the buffer and convert. | |||
int REGISTER = 0; // We will use these to convert as we | |||
unsigned char LOOKUP = 0; // go through the data. | |||
// First two base64 bytes | |||
const int MakeRoomFor6Bits = 6; | |||
LOOKUP = NextSixBits(cursor, bfr, len); // Grab the next six bits. | |||
if(STOP == LOOKUP) { break; } // If we ran out here it's ok. | |||
if(XXXX == LOOKUP) { return; } // If the byte is bad bail out! | |||
REGISTER += LOOKUP; REGISTER <<= MakeRoomFor6Bits; // Shift that one into place. | |||
LOOKUP = NextSixBits(cursor, bfr, len); // Grab the next six bits. | |||
if(XXXX == LOOKUP || STOP == LOOKUP) { return; } // If bad or empty here bail out! | |||
REGISTER += LOOKUP; // Load in the six bits. | |||
// Now we have 12 bits so we can grab our first byte. | |||
const int GetMS8OutOf12Bits = 4; | |||
const int BottomFourBits = 0x0000000F; | |||
push_back(REGISTER >> GetMS8OutOf12Bits); // Push back the converted byte. | |||
REGISTER = (REGISTER & BottomFourBits) << MakeRoomFor6Bits; // Make room for the next 6 bits. | |||
// Grab the next 6 bits. | |||
LOOKUP = NextSixBits(cursor, bfr, len); // Grab the next six bits. | |||
if(XXXX == LOOKUP || STOP == LOOKUP) { return; } // If bad or empty here bail out! | |||
if(PAD0 == LOOKUP) { break; } // If we've come to a pad we're done! | |||
REGISTER += LOOKUP; // Load in the six bits. | |||
// Now we have 10 bits so we can grab our Second byte. | |||
const int GetMS8OutOf10Bits = 2; | |||
const int BottomTwoBits = 0x00000003; | |||
push_back(REGISTER >> GetMS8OutOf10Bits); // Push back the converted byte. | |||
REGISTER = (REGISTER & BottomTwoBits) << MakeRoomFor6Bits; // Make room for the next 6 bits. | |||
LOOKUP = NextSixBits(cursor, bfr, len); // Grab the final six bits. | |||
if(XXXX == LOOKUP || STOP == LOOKUP) { return; } // If bad or empty here bail out! | |||
if(PAD0 == LOOKUP) { break; } // If we've come to a pad we're done! | |||
REGISTER += LOOKUP; // Load in the six bits. | |||
// Now we should have our final 8 bits :-) | |||
push_back(REGISTER); // push back the converted byte. | |||
} | |||
BadConversion = false; // If we get here we did ok. | |||
} | |||
from_base64::from_base64(const vector<unsigned char>& bfr) : // Converts from a base64buffer. | |||
BadConversion(true) { // It's bad until we've done it. | |||
convert(&bfr[0], bfr.size()); // Recast the pointer and do it. | |||
} | |||
from_base64::from_base64(const vector<char>& bfr) : // Converts from a buffer. | |||
BadConversion(true) { // It's bad until we've done it. | |||
convert(reinterpret_cast<const unsigned char*>(&bfr[0]), bfr.size()); // This is how we do it. | |||
} | |||
from_base64::from_base64(const string& s) : // Converts from a c++ string. | |||
BadConversion(true) { // It's bad until we've done it. | |||
convert(reinterpret_cast<const unsigned char*>(s.c_str()), s.length()); // This is how we do it. | |||
} | |||
from_base64::from_base64(const char* s) : // Converts from a c_string. | |||
BadConversion(true) { // It's bad until we've done it. | |||
convert(reinterpret_cast<const unsigned char*>(s), strlen(s)); // This is how we do it. | |||
} | |||
bool from_base64::Bad() { // Look at the flag. | |||
return BadConversion; | |||
} | |||
@@ -0,0 +1,49 @@ | |||
// base64codec.hpp | |||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation | |||
// BASE64 encoder decoder objects extending vectors | |||
#ifndef base64codec_included | |||
#define base64codec_included | |||
#include <vector> | |||
#include <cstring> | |||
#include <string> | |||
using namespace std; | |||
typedef vector<unsigned char> base64buffer; | |||
class to_base64 : public base64buffer { // Converts binary data to base 64. | |||
private: | |||
bool BadConversion; // True if something went wrong. | |||
void convert(const unsigned char* bfr, const int len); // Does the actual work. | |||
public: | |||
to_base64(const vector<unsigned char>& bfr); // Converts from a base64buffer. | |||
to_base64(const vector<char>& bfr); // Converts from a buffer. | |||
to_base64(const string& s); // Converts from a c++ string. | |||
to_base64(const char* s); // Converts from a c string. | |||
to_base64(const unsigned char* bfr, const int len); // Converts from a uchar buffer. | |||
to_base64(const char* bfr, const int len); // Converts from a char buffer. | |||
bool Bad(); | |||
}; | |||
class from_base64 : public base64buffer { // Convert base64 data to binary. | |||
private: | |||
bool BadConversion; // True if the conversion didn't go well. | |||
unsigned char NextSixBits( // Helper for decoding & ingoring spaces. | |||
int& cursor, | |||
const unsigned char* bfr, | |||
const int len); | |||
void convert(const unsigned char* bfr, const int len); // Does the actual work. | |||
public: | |||
from_base64(const vector<unsigned char>& bfr); // Converts from a base64buffer. | |||
from_base64(const vector<char>& bfr); // Converts from a buffer. | |||
from_base64(const string& s); // Converts from a c++ string. | |||
from_base64(const char*); // Converts from a c_string. | |||
bool Bad(); // True if conversion wasn't complete. | |||
}; | |||
#endif |
@@ -0,0 +1,734 @@ | |||
// configuration.hpp | |||
// | |||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
// | |||
// What about this ============================================================= | |||
// The configuration module provides a platform for reading configuration files | |||
// (or string data) containing well-formed xml and mapping that data to program | |||
// variables. | |||
// The idea is to provide the ability for an object or application to provide | |||
// a modular "configuration" object that models a hierarchical collection of | |||
// "settings" that can be represented easily in code and in xml. | |||
// | |||
// The following is an example model of a configuration in code and that same | |||
// configuration fully populated in xml. | |||
// | |||
// The code might look like this... | |||
// | |||
// int IntValue, DefaultInt = 3; | |||
// double DblValue, DefaultDbl = 3.14159; | |||
// bool BooleanValue, DefaultBool = false; | |||
// string StringValue, DefaultString = "NoStringHere"; | |||
// | |||
// SpecialConfigurator : public ConfigurationHandler { // Create a special handler to build a list | |||
// ... | |||
// public: | |||
// | |||
// ConfigurationHandler& Startup(ConfigurationElement& E) { // This function returns a handy handler to | |||
// return MyStartupConfigurationHandler; // (re) initialize this handler ;-) | |||
// } | |||
// | |||
// void Operator()() { // Each time the configurator is called | |||
// ... | |||
// } | |||
// | |||
// int Attribute1; // these items are interpreted and added | |||
// double Attribute2; // to the list. A ConfigurationHandler COULD | |||
// string Attribute3; // do something entirely different though ;-) | |||
// string Contents; | |||
// ... | |||
// } Special; | |||
// | |||
// ConfigurationElement SampleConfig("SampleConfiguration"); // Define a sample config (doc element) | |||
// SampleConfig // Populate the SampleConfig | |||
// .atStartCall(Special.Startup()) | |||
// .Element("Integer", IntValue, DefaultInt).End() // Link an element to an int w/ default. | |||
// .Element("Double", DblValue, DefaultDbl).End("Double") // Link an element to a dbl w/ default. | |||
// .Element("String", StringValue, DefaultString).End("String") // Link an element to a string w/ default. | |||
// .Element("ComplexElements") // Create a sub element. | |||
// .Element("Complex1") // Sub element Complex1 has attributes. | |||
// .Attribute("IntAtt", IntValue, DefaultInt) // Complex1 has an integer attribute. | |||
// .Attribute("DblAtt", DblValue, DefaultDbl) // Complex1 has a dbl attribute. | |||
// .Element("IntAtt", IntValue).End() // IntAtt can also be set by a sub element. | |||
// .Element("DblAtt", DblValue).End() // DblAtt can also be set by a sub element. | |||
// .End() // That's it for Complex1. | |||
// .Element("Complex2") // Create the Complex2 sub element. | |||
// .Attribute("C2I", IntValue, DefaultInt) // C2I attribute. | |||
// .Attribute("C2D", DblValue) // C2D attribute - no default. | |||
// .Attribute("C2S", StringValue, DefultString) // C2S attribute - string w/ default. | |||
// .End("Complex2") // End of element throws if doesn't match. | |||
// .Element("Complex3", Special.Contents) // Element 3 using a special configurator. | |||
// .Attribute("A1", Special.Attribute1) // Set A1 and A2 and A3 and when the | |||
// .Attribute("A2", Special.Attribute2) // element has been completed, Special() | |||
// .Attribute("A3", Special.Attribute3) // will be called to record the entries. | |||
// .atEndCall(Special) // Here's where we register the handler. | |||
// .End() // Closing Complex3 to be ice. | |||
// .End() // Closing ComplexElements to be nice. | |||
// .End(); // Closing SampleConfiguration to be nice. | |||
// | |||
// The XML might look like this... | |||
// | |||
// <SampleConfiguration> | |||
// <Integer>10</Integer> | |||
// <Double>2.4</Double> | |||
// <String>This is a sample string</String> | |||
// <ComplexElements> | |||
// <Complex1 IntAtt="4" DblAtt="2.1324"> | |||
// <IntAtt>24</IntAtt> <!-- changed IntAtt --> | |||
// </Complex1> | |||
// <Complex2 C2I='3' C2D='5.14' C2S='Some "string" we like' /> | |||
// <Complex3> stuff in here </Complex3> | |||
// <Complex3> Another instance </Complex3> | |||
// <Complex3> Each one gets passed to Special() on activation </Complex3> | |||
// <Complex3> This way, Special() can build a list or some other </Complex3> | |||
// <Complex3> interesting thing with all of these. </Complex3> | |||
// <ComplexElements> | |||
// </SampleConfiguration> | |||
// | |||
// Include This Header Once Only =============================================== | |||
#ifndef configuration_included | |||
#define configuration_included | |||
#include <string> | |||
#include <sstream> | |||
#include <fstream> | |||
#include <cstring> | |||
#include <cstdlib> | |||
#include <list> | |||
using namespace std; | |||
class ConfigurationElement; // Elements exist | |||
class ConfigurationAttribute; // Attributes exist | |||
class ConfigurationData; // Data exists | |||
class ConfigurationTranslator; // Translators exist | |||
class ConfigurationMnemonic; // Mnemonics exist | |||
class Configurator; // Configurators exist | |||
//// Configuration Element ///////////////////////////////////////////////////// | |||
// | |||
// Elements make up the core of a configuration. That is, a configuration is a | |||
// tree of elements. Elements translate directly to well formed xml elements in | |||
// a configuration file or string. | |||
class ConfigurationElement { | |||
private: | |||
string myName; // Elements have a name. | |||
// External important things I remember but don't touch... | |||
ConfigurationElement* myParent; // They may have a parrent. | |||
list<Configurator*> myStartConfigurators; // Call these when we start Interpret() | |||
list<Configurator*> myEndConfigurators; // Call these when we finish Interpret() | |||
// Internal / subordinate things I own and kill... | |||
list<ConfigurationAttribute*> myAttributes; // They may have a list of attributes. | |||
list<ConfigurationElement*> myElements; // They may have a list of sub-elements. | |||
list<ConfigurationMnemonic*> myMnemonics; // They may have a list of mnemonics. | |||
list<ConfigurationTranslator*> myTranslators; // They may have a list of translators. | |||
// During Interpret() operations we keep track of where we are seen... | |||
int myLine; // Last line number I was seen on. | |||
int myIndex; // Last char position I was seen on. | |||
int myLength; // Last segment length. | |||
bool myCleanFlag; // Keep track of initialization. | |||
bool myInitOnInterpretFlag; // Initialize() at each Interpret()? | |||
void runStartConfigurators(ConfigurationData& D); // Does what it says ;-) | |||
void runEndConfigurators(ConfigurationData& D); // Does what it says ;-) | |||
public: | |||
ConfigurationElement(const char* Name); // Must be constructed with a name | |||
ConfigurationElement(const string Name); // either c string or c++ string. | |||
ConfigurationElement(const char* Name, ConfigurationElement& Parent); // Sub-elements are constructed with a | |||
ConfigurationElement(const string Name, ConfigurationElement& Parent); // parrent. | |||
// Upon desctruction an element will delete all subordinate objects: | |||
// * All sub element objects. | |||
// * All attribute objects. | |||
// * All mnemonic objects. | |||
// * All translator objects. | |||
// It is important to use new when passing one of these objects to an | |||
// element or attribute to prevent problems with the delete operation. | |||
// NORMALLY these things would be created using factory methods on the | |||
// element and attribute objects themselves - so be careful. | |||
// It will not delete Configurators - they must | |||
// be deleted elsewhere because they may have been | |||
// re-used and this element wouldn't know about it ;-) | |||
~ConfigurationElement(); // The descrutor clears and deletes all! | |||
// Elements can be probed for some simple, useful things. | |||
string Name(); // Get the name of this element. | |||
ConfigurationElement& Parent(); // Get the parent of this element. | |||
ConfigurationElement& Parent(ConfigurationElement& newParent); // Set the parent of this element. | |||
// Note - if there is no parent (an element is the root) then it will | |||
// return a reference to itself when Parent() is called. | |||
int Line(); // Get the last line number. | |||
int Index(); // Get the last data position. | |||
int Length(); // Get the last length. | |||
// Elements can contain either data or sub-elements. | |||
ConfigurationElement& Element(const char* Name); // Add a new sub element by c string name. | |||
ConfigurationElement& Element(const string Name); // Add a new sub element by c++ string name. | |||
//// Mapping element factory methods for convenience. | |||
//// Root-Node elements are _usually_ empty and without attributes in xml | |||
//// so we don't make any of that type of convenience constructor here. | |||
// char* versions | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// string versions | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// End methods for heading back up the tree at the end of an element. | |||
class EndNameDoesNotMatch {}; // Throw when End(name) doesn't match. | |||
ConfigurationElement& End(); // Return this element's parent. | |||
ConfigurationElement& End(const char* Name); // Check the name and return the parent | |||
ConfigurationElement& End(const string Name); // if the name is correct - or throw! | |||
// Elements can have attributes. | |||
ConfigurationAttribute& Attribute(const char* Name); // Add an attribute using a cstring. | |||
ConfigurationAttribute& Attribute(const string Name); // Add an attribute using a c++ string. | |||
//// Mapping Attribute factory methods for convenience. | |||
// char* versions | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// string versions | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// Elements can Initialize() at each Interpret() call. | |||
ConfigurationElement& setInitOnInterpret(); // Set the init on interpret flag. | |||
// Elements can call external functions to aid in special operations | |||
// such as building lists. | |||
ConfigurationElement& atStartCall(Configurator& Functor); // Add an atStart call-back to this element. | |||
ConfigurationElement& atEndCall(Configurator& Functor); // Add an atEnd call-back to this element. | |||
// Extracting data from the element's contents is done with | |||
// translators. A good set of primatives are built in, but the user | |||
// can also make their own. If an Element is mapped to more than | |||
// one then they are all called once the element's contents are | |||
// collected. A translator takes the data provided by the element, | |||
// converts it into the expected type, and sets one or more variables | |||
// to the converted value. Usually - just one variable. | |||
ConfigurationElement& mapTo(ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationElement& mapTo(string& x, string init = string("")); // Map to a string. | |||
ConfigurationElement& mapTo(int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationElement& mapTo(double& x, double init = 0.0); // Map to a double. | |||
ConfigurationElement& mapTo(bool& x, bool init = false); // Map to a boolean. | |||
// An Element's contents may use some special mnemonics to make a | |||
// configuration easier to understand and less error prone. When the | |||
// contents match a mnemnoic then the translation of the mnemonic is | |||
// passed to the Translators instead of the raw contents. | |||
ConfigurationElement& Mnemonic(const char* name, const char* value); // Add a mnemonic using c strings. | |||
ConfigurationElement& Mnemonic(const char* name, const string value); // Add a mnemonic using c & c++ strings. | |||
ConfigurationElement& Mnemonic(const string name, const char* value); // Add a mnemonic using c++ & c strings. | |||
ConfigurationElement& Mnemonic(const string name, const string value); // Add a mnemonic using c++ strings. | |||
// The way data gets into an element tree is that it is Interpret()ed | |||
// recursively. The data is loaded into a ConfigurationData object which | |||
// is passed to the top Element. That element interpretes the data, moves | |||
// the interpretation pointers, and passes the data on to it's subordinate | |||
// elements in turn. They do the same recursively. When the last sub - | |||
// element has had it's way with the data, the interpretation process is | |||
// complete. The ConfigurationData object will contain the original data | |||
// and a log of anything that happened during the interpretation process. | |||
// | |||
// Each time an element is asked to Interpret() data, it calls any atStart | |||
// configurators, translates any attributes, then either translates it's | |||
// contents or passes the data to it's children, then calls any atEnd | |||
// configurators. | |||
// | |||
// To ensure that the correct default values are used the Initialize() is | |||
// always called on all internal attributes and elements before any data is | |||
// interpreted. To prevent this from being inefficient, a boolean flag is | |||
// kept in each element to keep track of whether it is clean and if it is | |||
// then the call to Initialize will simply return (skipping subordinate | |||
// elements along the way). | |||
// | |||
// Interpret returns true if this object found itself at the current | |||
// Data.Index and false if not. This helps keep the recursive parsing | |||
// code simpler ;-) | |||
void initialize(); // Reset all translators to defaults. | |||
void notifyDirty(); // Set dirty (if translators change). | |||
bool interpret(ConfigurationData& Data); // (re) Interpret this data. | |||
}; | |||
//// Configuration Attribute /////////////////////////////////////////////////// | |||
// | |||
// Attributes translate directly to well formed xml attributes (within the | |||
// start tag of an element). | |||
class ConfigurationAttribute { | |||
private: | |||
string myName; // Elements have a name. | |||
ConfigurationElement& myParent; // They may have a parrent. | |||
list<ConfigurationMnemonic*> myMnemonics; // They may have a list of mnemonics. | |||
list<ConfigurationTranslator*> myTranslators; // They may have a list of translators. | |||
int myLine; // Last line number I was seen on. | |||
int myIndex; // Last char position I was seen on. | |||
int myLength; // Last segment length. | |||
public: | |||
ConfigurationAttribute(const char* Name, ConfigurationElement& Parent); // Sub-elements are constructed with a | |||
ConfigurationAttribute(const string Name, ConfigurationElement& Parent); // parrent. | |||
// Attributes delete their Mnemonics and Translators when they go. | |||
// See Elements for similar warnings about objects provided to | |||
// this object... you must use new to be safe, or better yet - stick to | |||
// the built in factory methods ;-) | |||
~ConfigurationAttribute(); // Crush, Kill, Destroy! | |||
// Attributes can be probed for some simple, useful things. | |||
string Name(); // Get the name of this attribute. | |||
ConfigurationElement& Parent(); // Get the parent of this attribute. | |||
int Line(); // Get the last line number. | |||
int Index(); // Get the last data position. | |||
int Length(); // Get the last length. | |||
void notifyDirty(); // Attributes use this when they change. | |||
// For convenience in building configurations, an Attribute offers | |||
// some call-through methods to it's parrent Element. This allows for | |||
// clear, concise .method() coding that mimics an outline of the | |||
// configuration structure. | |||
//// For switching back to the parent element and adding new sub-elements. | |||
ConfigurationElement& Element(const char* Name); // Add a new sub element by c string name. | |||
ConfigurationElement& Element(const string Name); // Add a new sub element by c++ string name. | |||
//// Mapping element factory methods for convenience. | |||
//// Root-Node elements are _usually_ empty and without attributes in xml | |||
//// so we don't make any of that type of convenience constructor here. | |||
// char* versions | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// string versions | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationElement& Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// End methods for heading back up the tree at the end of an element. | |||
ConfigurationElement& End(); // Return this element's parent. | |||
ConfigurationElement& End(const char* Name); // Check the name and return the parent | |||
ConfigurationElement& End(const string Name); // if the name is correct - or throw! | |||
//// For adding new attributes to the parent element. | |||
ConfigurationAttribute& Attribute(const char* Name); // Add an attribute using a cstring. | |||
ConfigurationAttribute& Attribute(const string Name); // Add an attribute using a c++ string. | |||
//// Mapping Attribute factory methods for convenience. | |||
// char* versions | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
// string versions | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator); // Add a Translator to this element. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
string& x, string init = string("")); // Map to a string. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
int& x, int init = 0, int radix = 0); // Map to an int. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
double& x, double init = 0.0); // Map to a double. | |||
ConfigurationAttribute& Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
bool& x, bool init = false); // Map to a boolean. | |||
//// Set Init On Interprete for the parent element. | |||
ConfigurationElement& setInitOnInterpret(); // Set the init on interpret flag. | |||
//// For adding configurators to the parent element. | |||
ConfigurationElement& atStartCall(Configurator& Functor); // Add an atStart call-back to this element. | |||
ConfigurationElement& atEndCall(Configurator& Functor); // Add an atEnd call-back to this element. | |||
// Of course, the most useful thing about attributes is that they can | |||
// be mapped to variables using translators. The same as those that | |||
// apply to the parent element's contents. Here they are for use on this | |||
// attribute. | |||
ConfigurationAttribute& mapTo(ConfigurationTranslator& newTranslator); // Add a Translator to this attribute. | |||
ConfigurationAttribute& mapTo(string& x, string init = string("")); // Map to a string. | |||
ConfigurationAttribute& mapTo(int& x, int init, int radix = 0); // Map to an int. | |||
ConfigurationAttribute& mapTo(double& x, double init = 0.0); // Map to a double. | |||
ConfigurationAttribute& mapTo(bool& x, bool init = false); // Map to a boolean. | |||
// Attributes can have mnemonics just like elements. | |||
ConfigurationAttribute& Mnemonic(const char* name, const char* value); // Add a mnemonic using a c string. | |||
ConfigurationAttribute& Mnemonic(const char* name, const string value); // Add a mnemonic using c & c++ strings. | |||
ConfigurationAttribute& Mnemonic(const string name, const char* value); // Add a mnemonic using c++ & c strings. | |||
ConfigurationAttribute& Mnemonic(const string name, const string value); // Add a mnemonic using a c++ string. | |||
// Attributes participate in the Interprete() task just like elements. | |||
void initialize(); // Reset all translators to defaults. | |||
bool interpret(ConfigurationData& Data); // (re) Interpret this data. | |||
}; | |||
//// Configuration Data //////////////////////////////////////////////////////// | |||
// | |||
// A ConfigurationData object holds on to the configuration source data and | |||
// provideds a place to log any information about how the configuration was | |||
// interpreted. It also creates and destroys a handy char[] to contain the | |||
// data. To make this beastie easier to handle, we use the Named Constructor | |||
// Idiom and hide the true constructor in the private section. | |||
class ConfigurationData { // Configuration Data Source | |||
private: | |||
char* myDataBuffer; // The actual data buffer. | |||
int myBufferSize; // Size of the current buffer. | |||
int myIndex; // The current interpretation index. | |||
int myLine; // Current line number. | |||
public: | |||
ConfigurationData(const char* FileName); // Constructor from c string file name. | |||
ConfigurationData(const string FileName); // Constructor from c++ string file name. | |||
ConfigurationData(const char* Data, int Length); // Raw constructor from text buffer. | |||
~ConfigurationData(); // Destroys the internal buffer etc. | |||
char Data(int Index); // Returns char from Data[Index] | |||
int Index(); // Reads the current Index. | |||
int Index(int i); // Changes the current Index. | |||
int Line(); // Reads the current Line number. | |||
int addNewLines(int Count); // Increments the Line number. | |||
stringstream Log; // Convenient Interpret log. | |||
}; | |||
//// Configuration Translator ////////////////////////////////////////////////// | |||
// | |||
// A Translator converts the contents provided to it in string form into some | |||
// other data type. The object here is a prototype for that, followed by a | |||
// collection of the basic translators used for built-in mapTo()s. | |||
class ConfigurationTranslator { // Translators exist | |||
public: | |||
virtual void translate(const char* Value) = 0; // Pure virtual translator. | |||
virtual void initialize() = 0; // Pure virtual initializer. | |||
}; | |||
class StringTranslator : public ConfigurationTranslator { | |||
private: | |||
string& myVariable; // Variable to map. | |||
string myInitializer; // Initial/Default value. | |||
public: | |||
StringTranslator( // Construct this with | |||
string& Variable, // the variable to map, | |||
string Inititializer); // and the default value. | |||
void translate(const char* Value); // Provide a translation method. | |||
void initialize(); // Provide an initialization method. | |||
}; | |||
class IntegerTranslator : public ConfigurationTranslator { | |||
private: | |||
int& myVariable; // Variable to map. | |||
int myInitializer; // Initial/Default value. | |||
int myRadix; // Radix for strtol() | |||
public: | |||
IntegerTranslator( // Construct this with | |||
int& Variable, // the variable to map, | |||
int Inititializer, // and the default value. | |||
int Radix); // For this one we also need a Radix. | |||
void translate(const char* Value); // Provide a translation method. | |||
void initialize(); // Provide an initialization method. | |||
}; | |||
class DoubleTranslator : public ConfigurationTranslator { | |||
private: | |||
double& myVariable; // Variable to map. | |||
double myInitializer; // Initial/Default value. | |||
public: | |||
DoubleTranslator( // Construct this with | |||
double& Variable, // the variable to map, | |||
double Inititializer); // and the default value. | |||
void translate(const char* Value); // Provide a translation method. | |||
void initialize(); // Provide an initialization method. | |||
}; | |||
class BoolTranslator : public ConfigurationTranslator { | |||
private: | |||
bool& myVariable; // Variable to map. | |||
bool myInitializer; // Initial/Default value. | |||
public: | |||
BoolTranslator( // Construct this with | |||
bool& Variable, // the variable to map, | |||
bool Inititializer); // and the default value. | |||
void translate(const char* Value); // Provide a translation method. | |||
void initialize(); // Provide an initialization method. | |||
}; | |||
//// Configuration Mnemonic //////////////////////////////////////////////////// | |||
// | |||
// A Mnemonic allows the actual contents of an element or attribute to be | |||
// exchanged for a different "named" value to help eliminate "magic numbers" | |||
// and "secret codes" from configurations. One way this might be used is to | |||
// map an enumeration to the appropriate integer values, or things like YES and | |||
// NO to boolean true and false (respectively) when turning on/off program | |||
// options. | |||
class ConfigurationMnemonic { // Mnemonics | |||
private: | |||
string myName; // What is the Mnemonic? | |||
string myValue; // What is the translation? | |||
public: | |||
ConfigurationMnemonic(string Name, string Value); // To make one, provide both parts. | |||
bool test(string Name); // Test to see if this Mnemonic matches. | |||
string Value(); // If it does then we will need it's value. | |||
}; | |||
//// Configurator ////////////////////////////////////////////////////////////// | |||
// | |||
// A configurator is a "functor" or "closure" or "callback" that can be used to | |||
// support sophisticated interpretation options. The most basic and necessary | |||
// of these is support for list building. Consider an object created to contain | |||
// a list of records where each record might be represented as a collection of | |||
// attributes and elements. The object would have data elements mapped to the | |||
// attributes and elements in the configuration and then control elements which | |||
// are functors for initializing the list and storing new entries as they are | |||
// completed. The object here is a pure virtual prototype. | |||
class Configurator { // Configurators exist | |||
public: | |||
virtual void operator()(ConfigurationElement& E, ConfigurationData& D) = 0; // Pure virtual configurator. | |||
}; | |||
//// Include our inline methods //////////////////////////////////////////////// | |||
#include "configuration.inline.hpp" | |||
//// Utilities ///////////////////////////////////////////////////////////////// | |||
// SetTrueOnComplete Configurator ////////////////////////////////////////////// | |||
class ConfiguratorSetTrueOnComplete : public Configurator { // Configurator set's a boolean true. | |||
private: | |||
bool* myBoolean; // The boolean to set. | |||
public: | |||
ConfiguratorSetTrueOnComplete(); // Must init to NULL for safety. | |||
void setup(bool& Target); // Link to the target boolean. | |||
void operator()(ConfigurationElement& E, ConfigurationData& D); // Handle the operation. | |||
}; | |||
#endif | |||
// End Of Include Only Once | |||
@@ -0,0 +1,576 @@ | |||
// configuration.inline.hpp | |||
// | |||
// (C) 2006-2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
// See configuration.hpp for details | |||
//// Configuration Element ///////////////////////////////////////////////////// | |||
inline ConfigurationElement::ConfigurationElement(const char* Name) : // Construct with a cstring. | |||
myName(string(Name)), | |||
myParent(NULL), | |||
myLine(0), | |||
myIndex(0), | |||
myLength(0), | |||
myInitOnInterpretFlag(false), | |||
myCleanFlag(true) { | |||
} | |||
inline ConfigurationElement::ConfigurationElement(const string Name) : // Construct with a c++ string. | |||
myName(Name), | |||
myParent(NULL), | |||
myLine(0), | |||
myIndex(0), | |||
myLength(0), | |||
myInitOnInterpretFlag(false), | |||
myCleanFlag(true) { | |||
} | |||
inline ConfigurationElement::ConfigurationElement( // Construct sub element w/ cstring. | |||
const char* Name, | |||
ConfigurationElement& Parent) : | |||
myName(string(Name)), | |||
myParent(&Parent), | |||
myLine(0), | |||
myIndex(0), | |||
myLength(0), | |||
myInitOnInterpretFlag(false), | |||
myCleanFlag(true) { | |||
} | |||
inline ConfigurationElement::ConfigurationElement( // Construct sub element w/ string. | |||
const string Name, | |||
ConfigurationElement& Parent) : | |||
myName(Name), | |||
myParent(&Parent), | |||
myLine(0), | |||
myIndex(0), | |||
myLength(0), | |||
myInitOnInterpretFlag(false), | |||
myCleanFlag(true) { | |||
} | |||
inline string ConfigurationElement::Name() { return myName; } // Get the name of this element. | |||
inline ConfigurationElement& ConfigurationElement::Parent() { // Get the parrent of this element. | |||
if(NULL != myParent) { // If I have a parent | |||
return (*myParent); // then I dereference and return it. | |||
} // If I don't have a parent | |||
return (*this); // then I return myself. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Parent( // Set the parrent of this element. | |||
ConfigurationElement& Parent) { // Given this parent | |||
myParent = &Parent; // I take and store it's address | |||
return (*myParent); // then dereference and return it. | |||
} | |||
inline int ConfigurationElement::Line() { return myLine; } // Get the last line number. | |||
inline int ConfigurationElement::Index() { return myIndex; } // Get the last data position. | |||
inline int ConfigurationElement::Length() { return myLength; } // Get the last length. | |||
inline void ConfigurationElement::notifyDirty() { myCleanFlag = false; } // Attributes do this when they change. | |||
inline ConfigurationElement& ConfigurationElement::Element(const char* Name) { // Add a new sub element by c string name. | |||
return Element(string(Name)); // Use the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Element(const string Name) { // Add a new sub element by c++ string name. | |||
ConfigurationElement* N = new ConfigurationElement( // Create a new Element with the | |||
Name, // name provided and | |||
(*this)); // myself as the parent. | |||
myElements.push_back(N); // Add it to the list. | |||
return (*N); // Return the new element. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||
return Element(string(Name), newTranslator); // Use the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init) { // Map to a string. | |||
return Element(string(Name), x, init); // Use the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init, int radix) { // Map to an int. | |||
return Element(string(Name), x, init, radix); // Use the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init) { // Map to a double. | |||
return Element(string(Name), x, init); // Use the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init) { // Map to a boolean. | |||
return Element(string(Name), x, init); // Use the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::End() { // Return this element's parent. | |||
return Parent(); // Borrow Parent() | |||
} | |||
inline ConfigurationElement& ConfigurationElement::End(const char* Name) { // Check the name and return the parent | |||
return End(string(Name)); // Borrow End(string) | |||
} | |||
inline ConfigurationElement& ConfigurationElement::End(const string Name) { // if the name is correct - or throw! | |||
if(0 != Name.compare(myName)) { // If Name is not myName | |||
throw EndNameDoesNotMatch(); // throw an exception! | |||
} // If the names match then | |||
return Parent(); // return the parent. | |||
} | |||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Add an attribute using a cstring. | |||
const char* Name) { // Given this cstring name | |||
return Attribute(string(Name)); // Convert it to a string and borrow | |||
} // Attribute(string) | |||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||
return Attribute(string(Name), newTranslator); // Borrow the string name version | |||
} | |||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init) { // Map to a string. | |||
return Attribute(string(Name), x, init); // Borrow the string name version | |||
} | |||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init, int radix) { // Map to an int. | |||
return Attribute(string(Name), x, init); // Borrow the string name version | |||
} | |||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init) { // Map to a double. | |||
return Attribute(string(Name), x, init); // Borrow the string name version | |||
} | |||
inline ConfigurationAttribute& ConfigurationElement::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init) { // Map to a boolean. | |||
return Attribute(string(Name), x, init); // Borrow the string name version | |||
} | |||
inline ConfigurationElement& ConfigurationElement::setInitOnInterpret() { // Set the init on interpret flag. | |||
myInitOnInterpretFlag = true; // Set the flag. | |||
return(*this); // Dereference and return self. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::atStartCall( // Add an atStart call-back. | |||
Configurator& Functor) { // Given this Functor, | |||
myStartConfigurators.push_back(&Functor); // add it to my atStart list then | |||
return(*this); // dereference and return myself. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::atEndCall( // Add an atEnd call-back. | |||
Configurator& Functor) { // Given this Functor, | |||
myEndConfigurators.push_back(&Functor); // add it to my atEnd list then | |||
return(*this); // dereference and return myself. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c strings. | |||
const char* name, const char* value) { // Given char* and char* | |||
return Mnemonic(string(name), string(value)); // make strings and borrow that method. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. | |||
const char* name, const string value) { // Given char* and string | |||
return Mnemonic(string(name), value); // make strings and borrow that method. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using mixed strings. | |||
const string name, const char* value) { // Given string and char* | |||
return Mnemonic(name, string(value)); // make strings and borrow that method. | |||
} | |||
inline ConfigurationElement& ConfigurationElement::Mnemonic( // Add a mnemonic using c++ strings. | |||
const string name, const string value) { // Givent string and string | |||
ConfigurationMnemonic* N = // Create a new Mnemonic | |||
new ConfigurationMnemonic(name, value); // using the values provided, | |||
myMnemonics.push_back(N); // add it to my list, then | |||
return(*this); // dereference and return myself. | |||
} | |||
//// Configuration Attribute /////////////////////////////////////////////////// | |||
inline ConfigurationAttribute::ConfigurationAttribute( // Attributes are constructed with a | |||
const char* Name, ConfigurationElement& Parent) : // Name and a Parent. | |||
myName(string(Name)), // We convert the name to a string. | |||
myParent(Parent), // We just grab the parent. | |||
myLine(0), // Everything else gets zeroed. | |||
myLength(0), | |||
myIndex(0) { | |||
} | |||
inline ConfigurationAttribute::ConfigurationAttribute( // Attributes are constrictued with a | |||
const string Name, ConfigurationElement& Parent) : // Name and a Parent. | |||
myName(Name), // We grab them and zero the rest. | |||
myParent(Parent), | |||
myLine(0), | |||
myLength(0), | |||
myIndex(0) { | |||
} | |||
inline string ConfigurationAttribute::Name() { // Get the name of this attribute. | |||
return myName; | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Parent() { // Get the parent of this attribute. | |||
return myParent; | |||
} | |||
inline int ConfigurationAttribute::Line() { // Get the last line number. | |||
return myLine; | |||
} | |||
inline int ConfigurationAttribute::Index() { // Get the last data position. | |||
return myIndex; | |||
} | |||
inline int ConfigurationAttribute::Length() { // Get the last length. | |||
return myLength; | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c string name. | |||
const char* Name) { | |||
return myParent.Element(Name); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Add a new sub element by c++ string name. | |||
const string Name) { | |||
return myParent.Element(Name); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||
return myParent.Element(Name, newTranslator); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init) { // Map to a string. | |||
return myParent.Element(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init, int radix) { // Map to an int. | |||
return myParent.Element(Name, x, init, radix); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init) { // Map to a double. | |||
return myParent.Element(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init) { // Map to a boolean. | |||
return myParent.Element(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||
return myParent.Element(Name, newTranslator); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
string& x, string init) { // Map to a string. | |||
return myParent.Element(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
int& x, int init, int radix) { // Map to an int. | |||
return myParent.Element(Name, x, init, radix); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
double& x, double init) { // Map to a double. | |||
return myParent.Element(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::Element( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
bool& x, bool init) { // Map to a boolean. | |||
return myParent.Element(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::End() { // Return this element's parent. | |||
return myParent.End(); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::End(const char* Name) { // Check the name and return the parent | |||
return myParent.End(Name); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::End(const string Name) { // if the name is correct - or throw! | |||
return myParent.End(Name); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a cstring. | |||
const char* Name) { | |||
return myParent.Attribute(Name); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Add an attribute using a c++ string. | |||
const string Name) { | |||
return myParent.Attribute(Name); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||
return myParent.Attribute(Name, newTranslator); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
string& x, string init) { // Map to a string. | |||
return myParent.Attribute(Name, x, init); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
int& x, int init, int radix) { // Map to an int. | |||
return myParent.Attribute(Name, x, init, radix); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
double& x, double init) { // Map to a double. | |||
return myParent.Attribute(Name, x, init); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const char* Name, // requires a name, of course, | |||
bool& x, bool init) { // Map to a boolean. | |||
return myParent.Attribute(Name, x, init); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
ConfigurationTranslator& newTranslator) { // Add a Translator to this element. | |||
return myParent.Attribute(Name, newTranslator); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
string& x, string init) { // Map to a string. | |||
return myParent.Attribute(Name, x, init); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
int& x, int init, int radix) { // Map to an int. | |||
return myParent.Attribute(Name, x, init, radix); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
double& x, double init) { // Map to a double. | |||
return myParent.Attribute(Name, x, init); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Attribute( // Mapping factory for convenience, | |||
const string Name, // requires a name, of course, | |||
bool& x, bool init) { // Map to a boolean. | |||
return myParent.Attribute(Name, x, init); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::setInitOnInterpret() { // Set the init on interpret flag. | |||
return myParent.setInitOnInterpret(); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::atStartCall( // Add an atStart call-back to this element. | |||
Configurator& Functor) { | |||
return myParent.atStartCall(Functor); | |||
} | |||
inline ConfigurationElement& ConfigurationAttribute::atEndCall( // Add an atEnd call-back to this element. | |||
Configurator& Functor) { | |||
return myParent.atEndCall(Functor); | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c strings. | |||
const char* name, const char* value) { // Given char* and char* | |||
return Mnemonic(string(name), string(value)); // make strings and borrow that method. | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. | |||
const char* name, const string value) { // Given char* and string | |||
return Mnemonic(string(name), value); // make strings and borrow that method. | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using mixed strings. | |||
const string name, const char* value) { // Given string and char* | |||
return Mnemonic(name, string(value)); // make strings and borrow that method. | |||
} | |||
inline ConfigurationAttribute& ConfigurationAttribute::Mnemonic( // Add a mnemonic using c++ strings. | |||
const string name, const string value) { // Givent string and string | |||
ConfigurationMnemonic* N = // Create a new Mnemonic | |||
new ConfigurationMnemonic(name, value); // using the values provided, | |||
myMnemonics.push_back(N); // add it to my list, then | |||
return(*this); // dereference and return myself. | |||
} | |||
//// Configuration Data //////////////////////////////////////////////////////// | |||
inline char ConfigurationData::Data(int Index) { // Returns char from Data[Index] | |||
if(0 > Index || Index >= myBufferSize) { // Check that index is in range | |||
return 0; // and return 0 if it is not. | |||
} // If Index is within range then | |||
return myDataBuffer[Index]; // return the byte requested. | |||
} | |||
inline int ConfigurationData::Index() { // Reads the current Index. | |||
return myIndex; | |||
} | |||
inline int ConfigurationData::Index(int i) { // Changes the current Index. | |||
if(0 > i || i >= myBufferSize) { // If i is out of range then | |||
return myIndex; // return the current Index unchanged. | |||
} // If i is within range then | |||
myIndex = i; // change the Index to i and | |||
return myIndex; // return the changed Index. | |||
} | |||
inline int ConfigurationData::Line() { // Reads the current Line number. | |||
return myLine; | |||
} | |||
inline int ConfigurationData::addNewLines(int Count) { // Increments the Line number. | |||
myLine += Count; // Add the number of new lines. | |||
return myLine; // Return the current Line number. | |||
} | |||
//// Configuration Translator ////////////////////////////////////////////////// | |||
inline StringTranslator::StringTranslator( // Construct this with | |||
string& Variable, // the variable to map, | |||
string Initializer) : // and the default value. | |||
myVariable(Variable), | |||
myInitializer(Initializer) { | |||
} | |||
inline void StringTranslator::translate(const char* Value) { // Provide a translation method. | |||
myVariable = string(Value); // String to String = simple copy. | |||
} | |||
inline void StringTranslator::initialize() { // Provide an initialization method. | |||
myVariable = myInitializer; // Revert to the initializer value. | |||
} | |||
inline IntegerTranslator::IntegerTranslator( // Construct this with | |||
int& Variable, // the variable to map, | |||
int Initializer, // and the default value. | |||
int Radix) : // For this one we also need a Radix. | |||
myVariable(Variable), | |||
myInitializer(Initializer), | |||
myRadix(Radix) { | |||
} | |||
inline void IntegerTranslator::translate(const char* Value) { // Provide a translation method. | |||
char* dummy; // Throw away ptr for strtol(). | |||
myVariable = strtol(Value, &dummy, myRadix); // Convert the string w/ strtol(). | |||
} | |||
inline void IntegerTranslator::initialize() { // Provide an initialization method. | |||
myVariable = myInitializer; // Revert to the initializer value. | |||
} | |||
inline DoubleTranslator::DoubleTranslator( // Construct this with | |||
double& Variable, // the variable to map, | |||
double Initializer) : // and the default value. | |||
myVariable(Variable), | |||
myInitializer(Initializer) { | |||
} | |||
inline void DoubleTranslator::translate(const char* Value) { // Provide a translation method. | |||
char* dummy; // Throw away ptr for strtod(). | |||
myVariable = strtod(Value, &dummy); // Convert the string w/ strtod(). | |||
} | |||
inline void DoubleTranslator::initialize() { // Provide an initialization method. | |||
myVariable = myInitializer; // Revert to the initializer value. | |||
} | |||
inline BoolTranslator::BoolTranslator( // Construct this with | |||
bool& Variable, // the variable to map, | |||
bool Initializer) : // and the default value. | |||
myVariable(Variable), | |||
myInitializer(Initializer) { | |||
} | |||
inline void BoolTranslator::translate(const char* Value) { // Provide a translation method. | |||
if( | |||
(0 == strcmp(Value,"on")) || | |||
(0 == strcmp(Value,"true")) || // on, true, yes, and 1 are | |||
(0 == strcmp(Value, "yes")) || // interpreted as a boolean true. | |||
(0 == strcmp(Value, "1")) | |||
) { | |||
myVariable = true; | |||
} else { // Anything else is interpreted as | |||
myVariable = false; // boolean false. | |||
} | |||
} | |||
inline void BoolTranslator::initialize() { // Provide an initialization method. | |||
myVariable = myInitializer; // Revert to the initializer value. | |||
} | |||
//// Configuration Mnemonic //////////////////////////////////////////////////// | |||
inline ConfigurationMnemonic::ConfigurationMnemonic( // To make one, provide both parts. | |||
string Name, string Value) : | |||
myName(Name), | |||
myValue(Value) { | |||
} | |||
inline bool ConfigurationMnemonic::test(string Name) { // Test to see if this Mnemonic matches. | |||
return (0 == Name.compare(myName)); // Return true if Name and myName match. | |||
} | |||
inline string ConfigurationMnemonic::Value() { // If it does then we will need it's value. | |||
return myValue; | |||
} |
@@ -0,0 +1,60 @@ | |||
// histogram.hpp | |||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation | |||
// Class to capture a histogram of events using a <set> | |||
#ifndef mn_histogram_included | |||
#define mn_histogram_included | |||
#include <set> | |||
using namespace std; | |||
/** The Histogram class is managed set of HistogramRecords. | |||
*** We play some naughty tricks with pointers to break the rules and | |||
*** directly manipulate the counts of HistogramRecords stored in the | |||
*** set - thus saving space, complexity, and cycles. The set allows us | |||
*** to add new records as needed and locate existing records quickly. | |||
*** At any point in time, the set contains all of the event (hit) counts | |||
*** ordered by key. | |||
**/ | |||
class HistogramRecord { // A record to assocate a key and count. | |||
public: | |||
int Key; // Here is the key. | |||
int Count; // Here is the count. | |||
HistogramRecord(const int NewKey) : // We must have a key to make one. | |||
Key(NewKey), Count(0) {} // and a new one starts at count 0. | |||
bool operator<(const HistogramRecord& Right) const { // To live in a set we need to < | |||
return (Key < Right.Key); // properly based on the key. | |||
} | |||
}; | |||
class Histogram : public set<HistogramRecord> { // A Histogram is a set of HistogramRecords | |||
private: // and a private hit counter... | |||
int HitCount; | |||
public: | |||
Histogram() : HitCount(0) {} | |||
// with a few extra public functions. The | |||
int hit(const int EventKey, const int Adjustment = 1) { // hit() method increments a specific count. | |||
HistogramRecord E(EventKey); // First, make a record for the event key. | |||
insert(E); // Insert the new record (if it's not there). | |||
set<HistogramRecord>::iterator iE = // Find either the pre-existing or the new | |||
find(E); // record for this key. | |||
int* C; // Play naughty pointer games to access | |||
C = const_cast<int*>(&((*iE).Count)); // the Count for this record inside the | |||
(*C) += Adjustment; // set and add our Adjustment to it. | |||
HitCount += Adjustment; // Accumulate the adjustments overall. | |||
return(*C); // Return the count for this key. | |||
} | |||
int Hits() { return HitCount; } // Return the sum of hits so far. | |||
void reset() { // Reset the histogram to zero. | |||
HitCount = 0; // That means no counts, and | |||
clear(); // an empty set of records. | |||
} | |||
}; | |||
#endif | |||
@@ -0,0 +1,630 @@ | |||
// networking.cpp | |||
// Copyright (C) 2006-2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
//============================================================================== | |||
// See networking.hpp for notes. | |||
// See networking.inline.hpp for inlined methods & functions. | |||
#include "networking.hpp" | |||
Networking Network; // Finally creating the Network instance. | |||
//// Platform Specific Stuff /////////////////////////////////////////////////// | |||
#if defined(WIN32) || defined(WIN64) | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//// Being Windows specific code | |||
WSADATA WSSTartData; // Socket library data structure. | |||
// Error description handling for humans. | |||
string Networking::DescriptiveError(string Msg, int Errno) { // Form a descriptive error w/ errno. | |||
char* s = 0; | |||
switch(Errno) { | |||
case WSA_INVALID_HANDLE: s = "WSA_INVALID_HANDLE"; break; | |||
case WSA_NOT_ENOUGH_MEMORY: s = "WSA_NOT_ENOUGH_MEMORY"; break; | |||
case WSA_INVALID_PARAMETER: s = "WSA_INVALID_PARAMETER"; break; | |||
case WSA_OPERATION_ABORTED: s = "WSA_OPERATION_ABORTED"; break; | |||
case WSA_IO_INCOMPLETE: s = "WSA_IO_INCOMPLETE"; break; | |||
case WSA_IO_PENDING: s = "WSA_IO_PENDING"; break; | |||
case WSAEINTR: s = "WSAEINTR"; break; | |||
case WSAEBADF: s = "WSAEBADF"; break; | |||
case WSAEACCES: s = "WSAEACCES"; break; | |||
case WSAEFAULT: s = "WSAEFAULT"; break; | |||
case WSAEINVAL: s = "WSAEINVAL"; break; | |||
case WSAEMFILE: s = "WSAEMFILE"; break; | |||
case WSAEWOULDBLOCK: s = "WSAEWOULDBLOCK"; break; | |||
case WSAEINPROGRESS: s = "WSAEINPROGRESS"; break; | |||
case WSAEALREADY: s = "WSAEALREADY"; break; | |||
case WSAENOTSOCK: s = "WSAENOTSOCK"; break; | |||
case WSAEDESTADDRREQ: s = "WSAEDESTADDRREQ"; break; | |||
case WSAEMSGSIZE: s = "WSAEMSGSIZE"; break; | |||
case WSAEPROTOTYPE: s = "WSAEPROTOTYPE"; break; | |||
case WSAENOPROTOOPT: s = "WSAENOPROTOOPT"; break; | |||
case WSAEPROTONOSUPPORT: s = "WSAEPROTONOSUPPORT"; break; | |||
case WSAESOCKTNOSUPPORT: s = "WSAESOCKTNOSUPPORT"; break; | |||
case WSAEOPNOTSUPP: s = "WSAEOPNOTSUPP"; break; | |||
case WSAEPFNOSUPPORT: s = "WSAEPFNOSUPPORT"; break; | |||
case WSAEAFNOSUPPORT: s = "WSAEAFNOSUPPORT"; break; | |||
case WSAEADDRINUSE: s = "WSAEADDRINUSE"; break; | |||
case WSAEADDRNOTAVAIL: s = "WSAEADDRNOTAVAIL"; break; | |||
case WSAENETDOWN: s = "WSAENETDOWN"; break; | |||
case WSAENETUNREACH: s = "WSAENETUNREACH"; break; | |||
case WSAENETRESET: s = "WSAENETRESET"; break; | |||
case WSAECONNABORTED: s = "WSAECONNABORTED"; break; | |||
case WSAECONNRESET: s = "WSAECONNRESET"; break; | |||
case WSAENOBUFS: s = "WSAENOBUFS"; break; | |||
case WSAEISCONN: s = "WSAEISCONN"; break; | |||
case WSAENOTCONN: s = "WSAENOTCONN"; break; | |||
case WSAESHUTDOWN: s = "WSAESHUTDOWN"; break; | |||
case WSAETOOMANYREFS: s = "WSAETOOMANYREFS"; break; | |||
case WSAETIMEDOUT: s = "WSAETIMEDOUT"; break; | |||
case WSAECONNREFUSED: s = "WSAECONNREFUSED"; break; | |||
case WSAELOOP: s = "WSAELOOP"; break; | |||
case WSAENAMETOOLONG: s = "WSAENAMETOOLONG"; break; | |||
case WSAEHOSTDOWN: s = "WSAEHOSTDOWN"; break; | |||
case WSAEHOSTUNREACH: s = "WSAEHOSTUNREACH"; break; | |||
case WSAENOTEMPTY: s = "WSAENOTEMPTY"; break; | |||
case WSAEPROCLIM: s = "WSAEPROCLIM"; break; | |||
case WSAEUSERS: s = "WSAEUSERS"; break; | |||
case WSAEDQUOT: s = "WSAEDQUOT"; break; | |||
case WSAESTALE: s = "WSAESTALE"; break; | |||
case WSAEREMOTE: s = "WSAEREMOTE"; break; | |||
case WSASYSNOTREADY: s = "WSASYSNOTREADY"; break; | |||
case WSAVERNOTSUPPORTED: s = "WSAVERNOTSUPPORTED"; break; | |||
case WSANOTINITIALISED: s = "WSANOTINITIALISED"; break; | |||
case WSAEDISCON: s = "WSAEDISCON"; break; | |||
case WSAENOMORE: s = "WSAENOMORE"; break; | |||
case WSAECANCELLED: s = "WSAECANCELLED"; break; | |||
case WSAEINVALIDPROCTABLE: s = "WSAEINVALIDPROCTABLE"; break; | |||
case WSAEINVALIDPROVIDER: s = "WSAEINVALIDPROVIDER"; break; | |||
case WSAEPROVIDERFAILEDINIT: s = "WSAEPROVIDERFAILEDINIT"; break; | |||
case WSASYSCALLFAILURE: s = "WSASYSCALLFAILURE"; break; | |||
case WSASERVICE_NOT_FOUND: s = "WSASERVICE_NOT_FOUND"; break; | |||
case WSATYPE_NOT_FOUND: s = "WSATYPE_NOT_FOUND"; break; | |||
case WSA_E_NO_MORE: s = "WSA_E_NO_MORE"; break; | |||
case WSA_E_CANCELLED: s = "WSA_E_CANCELLED"; break; | |||
case WSAEREFUSED: s = "WSAEREFUSED"; break; | |||
case WSAHOST_NOT_FOUND: s = "WSAHOST_NOT_FOUND"; break; | |||
case WSATRY_AGAIN: s = "WSATRY_AGAIN"; break; | |||
case WSANO_RECOVERY: s = "WSANO_RECOVERY"; break; | |||
case WSANO_DATA: s = "WSANO_DATA"; break; | |||
case WSA_QOS_RECEIVERS: s = "WSA_QOS_RECEIVERS"; break; | |||
case WSA_QOS_SENDERS: s = "WSA_QOS_SENDERS"; break; | |||
case WSA_QOS_NO_SENDERS: s = "WSA_QOS_NO_SENDERS"; break; | |||
case WSA_QOS_NO_RECEIVERS: s = "WSA_QOS_NO_RECEIVERS"; break; | |||
case WSA_QOS_REQUEST_CONFIRMED: s = "WSA_QOS_REQUEST_CONFIRMED"; break; | |||
case WSA_QOS_ADMISSION_FAILURE: s = "WSA_QOS_ADMISSION_FAILURE"; break; | |||
case WSA_QOS_POLICY_FAILURE: s = "WSA_QOS_POLICY_FAILURE"; break; | |||
case WSA_QOS_BAD_STYLE: s = "WSA_QOS_BAD_STYLE"; break; | |||
case WSA_QOS_BAD_OBJECT: s = "WSA_QOS_BAD_OBJECT"; break; | |||
case WSA_QOS_TRAFFIC_CTRL_ERROR: s = "WSA_QOS_TRAFFIC_CTRL_ERROR"; break; | |||
case WSA_QOS_GENERIC_ERROR: s = "WSA_QOS_GENERIC_ERROR"; break; | |||
case WSA_QOS_ESERVICETYPE: s = "WSA_QOS_ESERVICETYPE"; break; | |||
case WSA_QOS_EFLOWSPEC: s = "WSA_QOS_EFLOWSPEC"; break; | |||
case WSA_QOS_EPROVSPECBUF: s = "WSA_QOS_EPROVSPECBUF"; break; | |||
case WSA_QOS_EFILTERSTYLE: s = "WSA_QOS_EFILTERSTYLE"; break; | |||
case WSA_QOS_EFILTERTYPE: s = "WSA_QOS_EFILTERTYPE"; break; | |||
case WSA_QOS_EFILTERCOUNT: s = "WSA_QOS_EFILTERCOUNT"; break; | |||
case WSA_QOS_EOBJLENGTH: s = "WSA_QOS_EOBJLENGTH"; break; | |||
case WSA_QOS_EFLOWCOUNT: s = "WSA_QOS_EFLOWCOUNT"; break; | |||
case WSA_QOS_EPOLICYOBJ: s = "WSA_QOS_EPOLICYOBJ"; break; | |||
case WSA_QOS_EFLOWDESC: s = "WSA_QOS_EFLOWDESC"; break; | |||
case WSA_QOS_EPSFLOWSPEC: s = "WSA_QOS_EPSFLOWSPEC"; break; | |||
case WSA_QOS_EPSFILTERSPEC: s = "WSA_QOS_EPSFILTERSPEC"; break; | |||
case WSA_QOS_ESDMODEOBJ: s = "WSA_QOS_ESDMODEOBJ"; break; | |||
case WSA_QOS_ESHAPERATEOBJ: s = "WSA_QOS_ESHAPERATEOBJ"; break; | |||
case WSA_QOS_RESERVED_PETYPE: s = "WSA_QOS_RESERVED_PETYPE"; break; | |||
#ifdef WSA_QOS_EUNKOWNPSOBJ | |||
case WSA_QOS_EUNKOWNPSOBJ: s = "WSA_QOS_EUNKOWNPSOBJ"; break; | |||
#endif | |||
} | |||
Msg.append(" "); | |||
if(s) { | |||
Msg.append(s); | |||
} | |||
else { | |||
ostringstream ErrNoMsg; | |||
ErrNoMsg << " UNKNOWN ErrorNumber = " << Errno; | |||
Msg.append(ErrNoMsg.str()); | |||
} | |||
return Msg; | |||
}; | |||
// Networking Constructor ////////////////////////////////////////////////////// | |||
// Handles any necessary setup of Network Module resources. | |||
Networking::Networking() { // Upon initialization, | |||
if(0 != WSAStartup(MAKEWORD (2,0), &WSSTartData)) { // startup the Winsock2.0 DLL. | |||
throw InitializationError( // If that fails then throw! | |||
"Networking::Networking() if(0 != WSAStartup(MAKEWORD (2,0), &WSSTartData))" | |||
); | |||
} | |||
} | |||
// Networking Destructor /////////////////////////////////////////////////////// | |||
// Handles any necessary cleanup of Network Module resources. | |||
Networking::~Networking() { // Upon shutdown, | |||
WSACleanup(); // shutdown the Winsock DLL. | |||
} | |||
//// Emd Windows specific code | |||
//////////////////////////////////////////////////////////////////////////////// | |||
#else | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//// Begin GNU specific code | |||
// Error description handling for humans. | |||
string Networking::DescriptiveError(string Msg, int Errno) { // Form a descriptive error w/ errno. | |||
Msg.append(" "); Msg.append(strerror(Errno)); | |||
return Msg; | |||
}; | |||
// Networking Constructor ////////////////////////////////////////////////////// | |||
// Handles any necessary setup of Network Module resources. | |||
Networking::Networking() { // Upon initialization, | |||
// Nothing So Far... // nothing special required. | |||
} | |||
// Networking Destructor /////////////////////////////////////////////////////// | |||
// Handles any necessary cleanup of Network Module resources. | |||
Networking::~Networking() { // GNU sockets cleanup, | |||
// Nothing So Far... // nothing specail to required. | |||
} | |||
//// End GNU specific code | |||
//////////////////////////////////////////////////////////////////////////////// | |||
#endif | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//// Platform Agnostic Stuff | |||
//// Useful Internal Bits & Pieces ///////////////////////////////////////////// | |||
const int LowestOctetMask = 0x000000FF; // The bits to look at. | |||
const int OneOctetInBits = 8; // The bits to shift. | |||
void splitIP( // Split an IP into octets. | |||
unsigned long A, // The address in host format. | |||
int& a0, // Reference to the first octet. | |||
int& a1, // Reference to the second octet. | |||
int& a2, // Reference to the third octet. | |||
int& a3 // Reference to the forth octet. | |||
){ | |||
a3 = A & LowestOctetMask; A >>= OneOctetInBits; // Get the lowest order octet & move. | |||
a2 = A & LowestOctetMask; A >>= OneOctetInBits; // Get the next lowest octet & move. | |||
a1 = A & LowestOctetMask; A >>= OneOctetInBits; // Get the next lowest octet & move. | |||
a0 = A & LowestOctetMask; // Get the highest octet. That's IT! | |||
} | |||
//// IP4Address methods //////////////////////////////////////////////////////// | |||
IP4Address::operator unsigned long int() const { // Assign to unsigned long int. | |||
return IP; // Return it. | |||
} | |||
IP4Address::operator string() const { // Assign to a string. | |||
char stringbfr[IPStringBufferSize]; // Grab a temporary buffer. | |||
memset(stringbfr, 0, sizeof(stringbfr)); // Null out it's space. | |||
int a0, a1, a2, a3; // Grab some integers. | |||
splitIP(IP, a0, a1, a2, a3); // Split the IP in the IP4Address. | |||
sprintf(stringbfr, "%d.%d.%d.%d", a0, a1, a2, a3); // Format the octets. | |||
return string(stringbfr); // Return a string. | |||
} | |||
//// SocketAddress methods ///////////////////////////////////////////////////// | |||
// getAddress(str, len) | |||
const char* SocketAddress::getAddress(char* str) { // Get the IP address into a cstring. | |||
if(NULL == str) { // If the caller did not provide a | |||
str = IPStringBuffer; // buffer to use then we will use ours. | |||
} | |||
int a0, a1, a2, a3, i=0; // Grab a bunch of handy integers. | |||
getAddress(a0, a1, a2, a3); // Get the address as octets. | |||
sprintf(str, "%d.%d.%d.%d", a0, a1, a2, a3); // Format as dotted decimal notation. | |||
return str; // Return the output buffer. | |||
} | |||
// getAddress(int& a0, int& a1, int& a2, int& a3) | |||
void SocketAddress::getAddress(int& a0, int& a1, int& a2, int& a3) { // Get the IP address into 4 ints | |||
unsigned long A = getAddress(); // Get the address. | |||
splitIP(A, a0, a1, a2, a3); // Split it into octets. | |||
} | |||
//// TCPListener methods /////////////////////////////////////////////////////// | |||
TCPListener::TCPListener(unsigned short Port) { // Set up localhost on this Port. | |||
LocalAddress.setPort(Port); // Establish the port. | |||
LocalAddress.setAddress(LOCALHOST); // Set the address to LOCALHOST. | |||
MaxPending = DefaultMaxPending; // Use the default inbound queue size. | |||
ReuseAddress = true; // ReuseAddress on by default. | |||
OpenStage1Complete = false; // This stage of open() not yet done. | |||
OpenStage2Complete = false; // This stage of open() not yet done. | |||
// Create a socket... | |||
LastError = 0; | |||
Handle = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); // Create the socket. | |||
if(INVALID_SOCKET == Handle) { // If that operation failed then | |||
LastError = Network.getLastError(); // grab the error code and | |||
throw Networking::SocketCreationError( // throw. | |||
Network.DescriptiveError( | |||
"TCPListener::open().socket()", LastError)); | |||
} | |||
} | |||
TCPListener::TCPListener(SocketAddress& WhereToBind) { // Set up specific "name" for listening. | |||
LocalAddress = WhereToBind; // Make my Local address as provided. | |||
MaxPending = DefaultMaxPending; // Use the default inbound queue size. | |||
ReuseAddress = true; // ReuseAddress on by default. | |||
OpenStage1Complete = false; // This stage of open() not yet done. | |||
OpenStage2Complete = false; // This stage of open() not yet done. | |||
// Create a socket... | |||
LastError = 0; | |||
Handle = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); // Create the socket. | |||
if(INVALID_SOCKET == Handle) { // If that operation failed then | |||
LastError = Network.getLastError(); // grab the error code and | |||
throw Networking::SocketCreationError( // throw. | |||
Network.DescriptiveError( | |||
"TCPListener::open().socket()", LastError)); | |||
} | |||
} | |||
// open() | |||
void TCPListener::open() { // Open when ready. | |||
if(OpenSucceeded) return; // If open already, we're done. | |||
LastError = 0; // Clear the last error. | |||
bool SuccessFlag = true; // Start optimistically. | |||
// Set SO_REUSEADDR if turned on | |||
if(!OpenStage1Complete) { // Do this stage only once. | |||
int ReuseAddress_Flag = (ReuseAddress? 1:0); // Setup an appropriate integer flag. | |||
int result = // Set SO_REUSEADDR before bind(). | |||
setsockopt( | |||
Handle, | |||
SOL_SOCKET, | |||
SO_REUSEADDR, | |||
(char*) &ReuseAddress_Flag, | |||
sizeof(ReuseAddress_Flag)); | |||
if(0 > result) { // If there was an error then | |||
SuccessFlag = false; // we did not succeed. | |||
LastError = Network.getLastError(); // Capture the error information and | |||
throw Networking::SocketSetSockOptError( // throw. | |||
Network.DescriptiveError( | |||
"TCPListener::open().setsockopt()", LastError)); | |||
} | |||
OpenStage1Complete = true; // Stage 1 complete now. | |||
} // End of open() stage 1 | |||
// Next we bind it... | |||
if(!OpenStage2Complete) { // Do this stage only once. | |||
int result = // Bind our socket to the LocalAddress. | |||
bind( | |||
Handle, | |||
LocalAddress.getPtr_sockaddr(), | |||
LocalAddress.getAddressSize()); | |||
if(0 > result) { // If there was an error then | |||
SuccessFlag = false; // we did not succeed. | |||
LastError = Network.getLastError(); // Capture the error information and | |||
throw Networking::SocketBindError( // throw. | |||
Network.DescriptiveError( | |||
"TCPListener::open().bind()", LastError)); | |||
} | |||
OpenStage2Complete = true; // Stage 2 complete now. | |||
} // End of open() stage 2 | |||
// Then we put it in a listening state... | |||
int result = listen(Handle, MaxPending); // Listen for up to MaxPending at once. | |||
if(0 > result) { // If an error occurred then | |||
SuccessFlag = false; // we did not succeed. | |||
LastError = Network.getLastError(); // Capture the error information and | |||
throw Networking::SocketListenError( // throw. | |||
Network.DescriptiveError( | |||
"TCPListener::open().listen()", LastError)); | |||
} | |||
OpenSucceeded = SuccessFlag; // So, did we succeed? | |||
} | |||
// acceptClient() | |||
TCPClient* TCPListener::acceptClient() { // Accept a client connection. | |||
LastError = 0; // Clear the last error. | |||
socklen_t rsize = RemoteAddress.getAddressSize(); // Size as an int for accept(). | |||
hSocket NewHandle = // Accept a new connection if available. | |||
accept( | |||
Handle, // use our handle, of course,... | |||
RemoteAddress.getPtr_sockaddr(), // and store the remote hosts | |||
&rsize); // address for us. | |||
if(INVALID_SOCKET == NewHandle) { // If there was an error then | |||
LastError = Network.getLastError(); // capture the error value. | |||
if(!Network.WouldBlock(LastError)) { // If it's not a EWOULDBLOCK error | |||
throw Networking::SocketAcceptError( // then we need to throw. | |||
Network.DescriptiveError( | |||
"TCPListener::acceptClient()", LastError)); | |||
} else { // EWOULDBLOCK errors are normal in | |||
return NULL; // non blocking mode so we return | |||
} // NULL when we see them. | |||
} | |||
// If things have gone well we can do what we came for. | |||
return new TCPClient(*this, NewHandle, RemoteAddress); // Create the new TCPClient object. | |||
} | |||
//// TCPClient methods ///////////////////////////////////////////////////////// | |||
int TCPClient::transmit(const char* bfr, int size) { // How to send a buffer of data. | |||
LastError = 0; // No errors yet. | |||
if(0 == size) return 0; // Nothing to send, send nothing. | |||
if(0 == bfr) // Watch out for null buffers. | |||
throw Networking::SocketWriteError("TCPClient::transmit() NULL Bfr!"); | |||
if(0 > size) // Watch out for bad sizes. | |||
throw Networking::SocketWriteError("TCPClient::transmit() 0 > size!"); | |||
int ByteCount = send(Handle, bfr, size, NOFLAGS); // Try to send and capture the count. | |||
if(0 > ByteCount) ByteCount = 0; // Mask error results as 0 bytes sent. | |||
if(size > ByteCount) { // If we didn't send it all check it out. | |||
LastError = Network.getLastError(); // Grab the error code. | |||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||
return ByteCount; // it was a partial send - return. | |||
} else { // If this was a different kind of error | |||
throw Networking::SocketWriteError( // then throw! | |||
Network.DescriptiveError( | |||
"TCPClient::transmit()", LastError)); | |||
} | |||
} | |||
return ByteCount; // Ultimately return the byte count. | |||
} | |||
int TCPClient::receive(char* bfr, int size) { // How to receive a buffer of data. | |||
if(ReadBufferIsEmpty()) { // If the read buffer is empty then | |||
fillReadBuffer(); // fill it first. | |||
} // Optimize our transfer to the smaller | |||
if(DataLength < size) { // of what we have or the size of the | |||
size = DataLength; // provided buffer. This way we ony check | |||
} // one value in our copy loop ;-) | |||
int RemainingDataLength = size; // Capture the length of data to xfer. | |||
while(0 < RemainingDataLength) { // While we have work to do | |||
*bfr = *ReadPointer; // copy each byte from our ReadBuffer, | |||
bfr++; ReadPointer++; // move the pointers to the next byte, | |||
DataLength--; // update our ReadBuffers's DataLength, | |||
RemainingDataLength--; // and count down the bytes left to xfer. | |||
} | |||
return size; // When done, say how much we moved. | |||
} | |||
int TCPClient::delimited_receive(char* bfr, int size, char delimiter) { // How to receive delimited data. | |||
if(ReadBufferIsEmpty()) { // If the read buffer is empty then | |||
fillReadBuffer(); // fill it first. | |||
} // Optimize our transfer to the smaller | |||
if(DataLength < size) { // of what we have or the size of the | |||
size = DataLength; // provided buffer. This way we ony check | |||
} // one value in our copy loop ;-) | |||
int Count = 0; // Keep our byte count in scope. | |||
bool DelimiterNotReached = true; // Watching for our deliimiter. | |||
while((Count < size) && DelimiterNotReached) { // While there is work to do... | |||
*bfr = *ReadPointer; // copy each byte from our ReadBuffer, | |||
DelimiterNotReached = (delimiter != (*bfr)); // check for the delimiter character, | |||
bfr++; ReadPointer++; // move the pointers to the next byte, | |||
DataLength--; // update our ReadBuffers's DataLength, | |||
Count++; // and count up the bytes we have moved. | |||
} | |||
return Count; // When done, say how much we moved. | |||
} | |||
//// TCPHost methods /////////////////////////////////////////////////////////// | |||
// Constructors... | |||
TCPHost::TCPHost(unsigned short Port) { // Will connect to localhost on Port. | |||
RemoteAddress.setPort(Port); // Connect to Port on | |||
RemoteAddress.setAddress(LOCALHOST); // Localhost. | |||
ReadPointer = ReadBuffer; // Set the read position to zero. | |||
DataLength = 0; // There is no data yet. | |||
ReuseAddress = false; // ReuseAddress off by default. | |||
OpenStage1Complete = false; // Stage 1 of open() not done yet. | |||
// Create a socket to use. | |||
LastError = 0; // Clear our last error value. | |||
Handle = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); // Create the socket. | |||
if(0 > Handle) { // If that operation failed then | |||
LastError = Network.getLastError(); // grab the error code and | |||
throw Networking::SocketCreationError( // throw. | |||
Network.DescriptiveError( | |||
"TCPHost::open().socket()", LastError)); | |||
} | |||
} | |||
TCPHost::TCPHost(SocketAddress& Remote) { // Will connect to Remote address/port. | |||
RemoteAddress = Remote; // Capture the provided address. | |||
ReadPointer = ReadBuffer; // Set the read position to zero. | |||
DataLength = 0; // There is no data yet. | |||
ReuseAddress = false; // ReuseAddress off by default. | |||
OpenStage1Complete = false; // Stage 1 of open() not done yet. | |||
// Create a socket to use. | |||
LastError = 0; // Clear our last error value. | |||
Handle = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); // Create the socket. | |||
if(0 > Handle) { // If that operation failed then | |||
LastError = Network.getLastError(); // grab the error code and | |||
throw Networking::SocketCreationError( // throw. | |||
Network.DescriptiveError( | |||
"TCPHost::open().socket()", LastError)); | |||
} | |||
} | |||
// Methods... | |||
void TCPHost::open() { // We provide open(). | |||
if(OpenSucceeded) return; // If open already, we're done. | |||
LastError = 0; // Clear our LastError value. | |||
bool SuccessFlag = true; // Begin optimistically. | |||
// Set SO_REUSEADDR if turned on | |||
if(!OpenStage1Complete) { // If we haven't done this yet: | |||
int ReuseAddress_Flag = (ReuseAddress? 1:0); // Setup an appropriate integer flag. | |||
int result = // Set SO_REUSEADDR before bind(). | |||
setsockopt( | |||
Handle, | |||
SOL_SOCKET, | |||
SO_REUSEADDR, | |||
(char *)&ReuseAddress_Flag, | |||
sizeof(ReuseAddress_Flag)); | |||
if(0 > result) { // If there was an error then | |||
SuccessFlag = false; // we did not succeed. | |||
LastError = Network.getLastError(); // Capture the error information and | |||
throw Networking::SocketSetSockOptError( // throw. | |||
Network.DescriptiveError( | |||
"TCPListener::open().setsockopt()", LastError)); | |||
} | |||
OpenStage1Complete = true; // Skip this section from now on. | |||
} // Done with stage 1. | |||
// Connect the socekt to the Host. | |||
int result = // Connect to the remote host | |||
connect( // using the socket we just | |||
Handle, // stored in Handle and | |||
RemoteAddress.getPtr_sockaddr(), // the Remote address. | |||
RemoteAddress.getAddressSize()); | |||
if(0 > result) { // If there was an error then | |||
SuccessFlag = false; // we did not succeed. | |||
LastError = Network.getLastError(); // Record the error data. | |||
if(Network.IsConnected(LastError)) { // If we actually did succeed then | |||
SuccessFlag = true; // say so. (Silly Winsock!) | |||
} else // But if that's not the case check | |||
if( // to see if something bad happened - | |||
!Network.WouldBlock(LastError) && // not just would-block, or | |||
!Network.InProgress(LastError) // in progress... | |||
) { // If it was something other than | |||
throw Networking::SocketConnectError( // WouldBlock or InProgress then | |||
Network.DescriptiveError( // throw! | |||
"TCPHost::open().connect()", LastError)); | |||
} // If it was WouldBlock then it's | |||
} // considered to be ok. | |||
OpenSucceeded = SuccessFlag; // So, are we open now? | |||
} | |||
int TCPHost::transmit(const char* bfr, int size) { // How to send a buffer of data. | |||
LastError = 0; // No errors yet. | |||
if(0 == size) return 0; // Nothing to send, send nothing. | |||
if(0 == bfr) // Watch out for null buffers. | |||
throw Networking::SocketWriteError("TCPHost::transmit() NULL Bfr!"); | |||
if(0 > size) // Watch out for bad sizes. | |||
throw Networking::SocketWriteError("TCPHost::transmit() 0 > size!"); | |||
int ByteCount = send(Handle, bfr, size, NOFLAGS); // Try to send and capture the count. | |||
if(0 > ByteCount) ByteCount = 0; // Mask error results as 0 bytes sent. | |||
if(size > ByteCount) { // If we didn't send it all check it out. | |||
LastError = Network.getLastError(); // Grab the error code. | |||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||
return ByteCount; // it was a partial snd - return. | |||
} else { // If this was a different kind of error | |||
throw Networking::SocketWriteError( // then throw! | |||
Network.DescriptiveError( | |||
"TCPHost::transmit().send()", LastError)); | |||
} | |||
} | |||
return ByteCount; // Ultimately return the byte count. | |||
} | |||
int TCPHost::receive(char* bfr, int size) { // How to receive a buffer of data. | |||
if(ReadBufferIsEmpty()) { // If the read buffer is empty then | |||
fillReadBuffer(); // fill it first. | |||
} // Optimize our transfer to the smaller | |||
if(DataLength < size) { // of what we have or the size of the | |||
size = DataLength; // provided buffer. This way we ony check | |||
} // one value in our copy loop ;-) | |||
int RemainingDataLength = size; // Capture the length of data to xfer. | |||
while(0 < RemainingDataLength) { // While we have work to do | |||
*bfr = *ReadPointer; // copy each byte from our ReadBuffer, | |||
bfr++; ReadPointer++; // move the pointers to the next byte, | |||
DataLength--; // update our ReadBuffers's DataLength, | |||
RemainingDataLength--; // and count down the bytes left to xfer. | |||
} | |||
return size; // When done, say how much we moved. | |||
} | |||
int TCPHost::delimited_receive(char* bfr, int size, char delimiter) { // How to receive delimited data. | |||
if(ReadBufferIsEmpty()) { // If the read buffer is empty then | |||
fillReadBuffer(); // fill it first. | |||
} // Optimize our transfer to the smaller | |||
if(DataLength < size) { // of what we have or the size of the | |||
size = DataLength; // provided buffer. This way we ony check | |||
} // one value in our copy loop ;-) | |||
int Count = 0; // Keep our byte count in scope. | |||
bool DelimiterNotReached = true; // Watching for our deliimiter. | |||
while((Count < size) && DelimiterNotReached) { // While there is work to do... | |||
*bfr = *ReadPointer; // copy each byte from our ReadBuffer, | |||
DelimiterNotReached = (delimiter != (*bfr)); // check for the delimiter character, | |||
bfr++; ReadPointer++; // move the pointers to the next byte, | |||
DataLength--; // update our ReadBuffers's DataLength, | |||
Count++; // and count up the bytes we have moved. | |||
} | |||
return Count; // When done, say how much we moved. | |||
} | |||
// End Platform Agnostic Stuff | |||
//////////////////////////////////////////////////////////////////////////////// |
@@ -0,0 +1,529 @@ | |||
// networking.hpp | |||
// Copyright (C) 2006-2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
//============================================================================== | |||
// The networking module abstracts network communications and provides a set | |||
// of objects for handling most tasks. | |||
// 20080313 _M Refactored to throw proper runtime_error exceptions. | |||
// Include only once... | |||
#ifndef M_Networking | |||
#define M_Networking | |||
#include <stdexcept> | |||
#include <iostream> | |||
#include <string> | |||
#include <sstream> | |||
#include <cstring> | |||
using namespace std; | |||
//// Platform specific includes... | |||
#if defined(WIN32) || defined(WIN64) | |||
//// Windows headers... | |||
#include <winsock2.h> | |||
typedef int socklen_t; // Posix uses socklen_t so we mimic it. | |||
typedef SOCKET hSocket; // Winx handles Socket is opaque. | |||
#else | |||
//// GNU Headers... | |||
#include <netdb.h> | |||
#include <sys/socket.h> | |||
#include <netinet/in.h> | |||
#include <sys/file.h> | |||
#include <arpa/inet.h> | |||
#include <unistd.h> | |||
#include <fcntl.h> | |||
#include <cstdlib> | |||
#include <cstdio> | |||
#include <cerrno> | |||
typedef int hSocket; // *nix uses int to handle a Socket. | |||
const hSocket INVALID_SOCKET = -1; // -1 is the invalid Socket. | |||
#endif | |||
//// Tuning and Constants ////////////////////////////////////////////////////// | |||
const unsigned long LOCALHOST = 0x7F000001; // 127.0.0.1 as an integer. | |||
const int DefaultMaxPending = 5; // Default connection queue size. | |||
const int TCPClientBufferSize = 4096; // TCP Client buffer size. | |||
const int TCPHostBufferSize = 4096; // TCP Host buffer size. | |||
const int NOFLAGS = 0; // Magic number for no flags. | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// IP4address class | |||
// | |||
// The IP4address class makes it easy to manipulate IPs. | |||
class IP4Address { // IP4Address manipulator. | |||
private: | |||
unsigned long int IP; // The actual data. | |||
public: | |||
IP4Address(); // Blank constructor IP = 0.0.0.0 | |||
IP4Address(const unsigned long int newIP); // Constructor given unsigned long | |||
IP4Address(const IP4Address&); // Constructor given an IP4Address | |||
IP4Address(const char* newIP); // Construcing with a cstring. | |||
IP4Address(const string& newIP); // Constructing with a cppstring. | |||
IP4Address& operator=(const unsigned long int Right); // Convert from unsigned long int. | |||
IP4Address& operator=(const char* Right); // Convert from c string. | |||
IP4Address& operator=(const string& Right); // Convert from cpp string. | |||
operator unsigned long int() const; | |||
operator string() const; | |||
bool operator<(const IP4Address Right) const; // < Comparison. | |||
bool operator>(const IP4Address Right) const; // > Comparison. | |||
bool operator==(const IP4Address Right) const; // == Comparison. | |||
bool operator!=(const IP4Address Right) const; // != Comparison. | |||
bool operator<=(const IP4Address Right) const; // <= Comparison. | |||
bool operator>=(const IP4Address Right) const; // >= Comparison. | |||
}; | |||
/* static unsigned long int& | |||
operator=(unsigned long int& Out, const IP4Address& In); // Assign to unsigned long | |||
static string& | |||
operator=(string& Out, const IP4Address& In); // Assign to cpp string | |||
*/ | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Network Core class | |||
// | |||
// The Networking class acts as a central point for setup, cleanup, and access | |||
// to network services. For example, when using WinSock, the DLL initialization | |||
// must occur once when the program starts up and the shutdown must occur once | |||
// as the program shuts down. The constructor and destructor of the "Network" | |||
// instances of this class handles that work. There should only be one instance | |||
// of this class anywhere in the program and that instance is created when this | |||
// module is included. DON'T MAKE MORE INSTANCES OF THIS :-) | |||
// | |||
// Part of the reason for this class is to handle all of the cross-platform | |||
// weirdness involved in handling sockets and conversions. This way all of the | |||
// ifdef switched code can be consolidated into this utility class and the | |||
// code for the remaining classes can remain nice and clean by using this | |||
// class to handle those tasks. | |||
class Networking { | |||
private: | |||
public: | |||
class NotSupportedError : public runtime_error { // Thrown when something can't be done. | |||
public: NotSupportedError(const string& w):runtime_error(w) {} | |||
}; | |||
class InitializationError : public runtime_error { // Thrown if initialization fails. | |||
public: InitializationError(const string& w):runtime_error(w) {} | |||
}; | |||
class ControlError : public runtime_error { // Thrown if control functions fail. | |||
public: ControlError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketCreationError : public runtime_error { // Thrown if a call to socket() fails. | |||
public: SocketCreationError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketSetSockOptError : public runtime_error { | |||
public: SocketSetSockOptError(const string& w):runtime_error(w) {} // Thrown if a call to setsockopt() fails. | |||
}; | |||
class SocketBindError : public runtime_error { // Thrown if a call to bind() fails. | |||
public: SocketBindError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketListenError : public runtime_error { // Thrown if a call to listen() fails. | |||
public: SocketListenError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketConnectError : public runtime_error { // Thrown if a call to connect() fails. | |||
public: SocketConnectError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketAcceptError : public runtime_error { // Thrown if a call to accept() fails. | |||
public: SocketAcceptError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketReadError : public runtime_error { // Thrown if a socket read call fails. | |||
public: SocketReadError(const string& w):runtime_error(w) {} | |||
}; | |||
class SocketWriteError : public runtime_error { // Thrown if a socket write call fails. | |||
public: SocketWriteError(const string& w):runtime_error(w) {} | |||
}; | |||
static string DescriptiveError(string Msg, int Errno); // Form a descriptive error w/ errno. | |||
Networking(); | |||
~Networking(); | |||
int getLastError(); // WSAGetLastError or errno | |||
int setNonBlocking(hSocket socket); // Set socket to non-blocking. | |||
int closeSocket(hSocket socket); // closesocket() or close() | |||
bool WouldBlock(int ErrorCode); // ErrorCode matches [WSA]EWOULDBLOCK | |||
bool InProgress(int ErrorCode); // ErrorCode matches [WSA]EINPROGRESS | |||
bool IsConnected(int ErrorCode); // ErrorCode matches [WSA]EISCONN | |||
}; | |||
extern Networking Network; // There is ONE Network object ;-) | |||
// End of Network Core Class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// SocketName class | |||
// This class represents a communications end-point on a TCP/IP network. All | |||
// conversions from/to strings and for byte orders are handled in this class | |||
// as well as lookups for ports/services and IPaddresses/host-names. | |||
// | |||
// Note that the cstring conversions expect the buffer to be large enough. | |||
const int IPStringBufferSize = 40; // Safe size for IP as text conversion. | |||
const int PortStringBufferSize = 20; // Safe size for Port as text conversion. | |||
class SocketAddress { | |||
private: | |||
struct sockaddr_in Address; // Socket address structure. | |||
char IPStringBuffer[IPStringBufferSize]; // Handy conversion buffer. | |||
char PortStringBuffer[PortStringBufferSize]; // Handy conversion buffer. | |||
public: | |||
SocketAddress(); // Constructor sets ANY address. | |||
struct sockaddr_in* getPtr_sockaddr_in(); // Returns a pointer to sockaddr_in. | |||
struct sockaddr* getPtr_sockaddr(); // Returns a pointer to sockaddr. | |||
socklen_t getAddressSize(); // How big is that structure anyway? | |||
void setAddress(unsigned long ipAddress); // Set the IP address from an unsigned int | |||
void setAddress(char* ipString); // Set the IP address from a cstring | |||
unsigned long getAddress(); // Get the IP address as an unsigned int | |||
const char* getAddress(char* str); // Get the IP address into a cstring | |||
void getAddress(int& a0, int& a1, int& a2, int& a3); // Get the IP address into 4 ints | |||
void setPort(unsigned short port); // Set the port address from an int | |||
void setPort(char* port); // Set the port address from a cstring | |||
unsigned short getPort(); // Get the port address as an unsigned int | |||
const char* getPort(char* str); // Get the port address into a cstring | |||
void clear(); // Initialize the address. | |||
}; | |||
// End of SocketName class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Socket class | |||
// This class abstracts the underlying socket and adds some functionality | |||
// for this module. The derived class is expected to setup the socket before | |||
// it can be opened. In fact, the derivative class must provide the open() | |||
// function :-) Open is expected to call socket, bind it, and set the socket | |||
// into the appropriate mode for it's use in the derived object. | |||
class Socket { | |||
protected: | |||
hSocket Handle; // Our socket handle. | |||
bool NonBlocking; // True if the socket is NonBlocking. | |||
bool ReuseAddress; // True if SO_REUSEADDR should be used. | |||
bool OpenSucceeded; // Successful open occurred. | |||
int LastError; // Last error result for this socket. | |||
SocketAddress LocalAddress; // Our local address data. | |||
SocketAddress RemoteAddress; // Our remote address data. | |||
public: | |||
Socket(); // Constructor sets initial state. | |||
~Socket(); // Destructor closes Socket if open. | |||
hSocket getHandle(); // Returns the current SocketId. | |||
bool isNonBlocking(); // Returns true if socket is NonBlocking | |||
void makeNonBlocking(); // Sets the socket to NonBlocking mode. | |||
bool isReuseAddress(); // True if socket is set SO_REUSEADDR. | |||
bool isReuseAddress(bool set); // Changes SO_REUSEADDR setting. | |||
bool isOpen(); // True if the socket is open. | |||
int getLastError(); // Returns the last error for this socket. | |||
virtual void open() = 0; // Derived class specifies open(); | |||
void close(); // Close politely. | |||
}; | |||
// End of Socket class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// MessagePort class | |||
// Interface that Sends and Receives messages - possibly a bit at a time. This | |||
// interface standardizes things so that multiple technologies can go beneith | |||
// such as UNIX domain pipes or named pipes or sockets etc. There is also a | |||
// special function to improve the efficiency of delimited transfers (such as | |||
// email). The function checks for the delimited byte inside an optimized loop | |||
// so that the port doesn't have to be read one byte at a time by the caller. | |||
// In the case of non-blocking ports, these methods may return before all of | |||
// the data has been transferred. In these cases the caller is expected to know | |||
// if it's got the complete message and is expected to repeat it's call until | |||
// it does. | |||
class MessagePort { | |||
public: | |||
virtual bool isNonBlocking() = 0; // True if we should expect partial xfrs. | |||
virtual int transmit(const char* bfr, int size) = 0; // How to send a buffer of data. | |||
virtual int receive(char* bfr, int size) = 0; // How to receive a buffer of data. | |||
virtual int delimited_receive(char* bfr, int size, char delimiter) = 0; // How to receive delimited data. | |||
}; | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Message class | |||
// This is a base class for representing messages that are sent to or received | |||
// from MessagePorts. The basic Message has 3 modes. Unfixed width, fixed width, | |||
// or delimeted. More complex messaging schemes can be built up from these | |||
// basics. A message must know how to send and recieve itself using the | |||
// MessagePort API and must be able to indicate if the latest transfer request | |||
// is complete or needs to be continued. The MessagePort may be blocking or | |||
// non-blocking. If it is blocking then a writeTo() or readFrom() operation | |||
// should not return until the transfer is completed. If the MessagePort is in | |||
// a non-blocking mode then writeTo() and readFrom() will do as much as they | |||
// can before returning but if the transfer was not completed then the app | |||
// lication may need to transferMore(). | |||
class Message { | |||
char* Data; // Pointer to message data. | |||
int DataBufferSize; // Size of buffer to hold data. | |||
int DataSize; // Size of Data. | |||
char* RWPointer; // RW position in buffer. | |||
bool TransferInProgress; // True if read or write is not complete. | |||
bool Delimited; // Delimited Message Flag. | |||
char Delimiter; // Delimiter character. | |||
public: | |||
/** All of this is yet to be built! **/ | |||
Message(const Message& M); // Copy constructor. | |||
Message(int Size); // Construct empty of Size. | |||
Message(int Size, char Delimiter); // Construct empty with delimiter. | |||
Message(char* NewData, int Size); // Construct non-delimited message. | |||
Message(char* NewData, int Size, char Delimiter); // Construct delimited message. | |||
void writeTo(MessagePort &P); // Initiate an outbound transfer. | |||
void readFrom(MessagePort &P); // Initiate an inbound transfer. | |||
bool isBusy(); // True if the transfer isn't complete. | |||
void transferMore(); // Do more of the transfer. | |||
void abortTransfer(); // Forget about the transfer. | |||
bool isDelimited(); // True if the message is delimited. | |||
char getDelimiter(); // Read the delimiter cahracter. | |||
char* getData(); // Access the data buffer. | |||
int getDataSize(); // How much data is there. | |||
}; | |||
// End of Message class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// TCPListener class | |||
// This class represents a local socket used to listen for new connections. The | |||
// application can poll this object for new inbound connections which are then | |||
// delivered as TCPClient objects. | |||
class TCPClient; // Hint about the coming client class. | |||
class TCPListener : public Socket { | |||
private: | |||
bool OpenStage1Complete; // First stage of open() complete. | |||
bool OpenStage2Complete; // Second stage of open() complete. | |||
public: | |||
TCPListener(unsigned short Port); // Set up localhost on this Port. | |||
TCPListener(SocketAddress& WhereToBind); // Set up specific "name" for listening. | |||
~TCPListener(); // Close when destructing. | |||
int MaxPending; // Maximum inbound connection queue. | |||
virtual void open(); // Open when ready. | |||
TCPClient* acceptClient(); // Accept a client connection. | |||
}; | |||
// End of TCPListener class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// TCPClient class | |||
// This class represents a TCP network client connection. It is created by | |||
// a TCPListener object if/when a TCP connection is made to the Listener and | |||
// accepted by the application. | |||
class TCPClient : public Socket, public MessagePort { | |||
private: | |||
TCPListener& MyListener; | |||
char ReadBuffer[TCPClientBufferSize]; // Buffer for delimited reading. | |||
//int ReadBufferSize; // Size of buffer. | |||
char* ReadPointer; // Read position. | |||
int DataLength; // Length of data in buffer. | |||
bool ReadBufferIsEmpty(); // True if DataLength is zero. | |||
void fillReadBuffer(); // Fill the ReadBuffer from the socket. | |||
public: | |||
TCPClient(TCPListener& L, hSocket H, SocketAddress& A); // How to create a TCPClient. | |||
~TCPClient(); // Destructor for cleanup. | |||
TCPListener& getMyListener(); // Where did I come from? | |||
bool isNonBlocking(); // Provided for MessagePort. | |||
virtual int transmit(const char* bfr, int size); // How to send a buffer of data. | |||
virtual int receive(char* bfr, int size); // How to receive a buffer of data. | |||
virtual int delimited_receive(char* bfr, int size, char delimiter); // How to receive delimited data. | |||
virtual void open(); // We provide open() as unsupported. | |||
unsigned long getRemoteIP(); // Get remote IP as long. | |||
const char* getRemoteIP(char* str); // Get IP as string. | |||
unsigned short getRemotePort(); // Get remote Port as unsigned short. | |||
const char* getRemotePort(char* str); // Get Port as string. | |||
}; | |||
// End of TCPClient class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// TCPHost class | |||
// This class represents a TCP network server connection. A client application | |||
// creates this object when it wants to connect to a given TCP service. | |||
class TCPHost : public Socket, public MessagePort { | |||
private: | |||
char ReadBuffer[TCPHostBufferSize]; // Buffer for delimited reading. | |||
char* ReadPointer; // Read position. | |||
int DataLength; // Length of data in buffer. | |||
bool ReadBufferIsEmpty(); // True if DataLength is zero. | |||
void fillReadBuffer(); // Fill the ReadBuffer from the socket. | |||
bool OpenStage1Complete; // Skip stage 1 of open() after done. | |||
public: | |||
TCPHost(unsigned short Port); // Will connect to localhost on Port. | |||
TCPHost(SocketAddress& Remote); // Will connect to Remote address/port. | |||
// TCPHost(SocketAddress& Local, SocketAddress& Remote); // Will connect to Remote from Local. | |||
~TCPHost(); // Clean up when we go away. | |||
bool isNonBlocking(); // Provided for MessagePort. | |||
virtual int transmit(const char* bfr, int size); // How to send a buffer of data. | |||
virtual int receive(char* bfr, int size); // How to receive a buffer of data. | |||
virtual int delimited_receive(char* bfr, int size, char delimiter); // How to receive delimited data. | |||
virtual void open(); // We provide open(). | |||
}; | |||
// End of TCPHost class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// UDPListener class | |||
// This class represents a local UPD port set up to listen for UDP requests. In | |||
// this case, each UDP packet that arrives is assumed to be a single request so | |||
// for each a UDPRequest object is created that links back to this Listener. | |||
// The application can then use that UDPRequest to .respond() with a Message. | |||
// the response is sent back to the original requester and the UDPRequest is | |||
// considered satisfied. | |||
class UDPListener : public Socket { | |||
}; | |||
// End of UDPListener class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// UDPRequest class | |||
// This class is created by a UDPListener when a packet is received. The object | |||
// contains all of the necessary information about the source for the request | |||
// so that the application can .respond() to them through this object. The | |||
// response UDP packtes are sent through the UDPListener socket. | |||
class UDPRequest : public MessagePort { | |||
}; | |||
// End of UDPRequest class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// UDPHost class | |||
// This class represents a server/host on the network that uses the UDP | |||
// protocol. The application can use this object to send a .request() Message | |||
// and getReply(). Each request becomes a UDP packet. Each received UDP packet | |||
// from the specified UDPHost becomes a reply Message. (Connected UDP socket). | |||
class UDPHost : public Socket, public MessagePort { | |||
}; | |||
// End of UDPHost class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// UDPReceiver class | |||
// This class is used to receive UDP packets on a particular port, but does not | |||
// create UDPRequest objects from them - they are considered to be simply | |||
// Messages. A UDPReceiver is most likely to be used in ad-hoc networking and | |||
// to receive advertisements and/or broadcasts from other peers. | |||
class UDPReceiver : public Socket, public MessagePort { | |||
}; | |||
// End of UDPReceiver class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// UDPBroadcaster class | |||
// This class is used to advertise / broadcast Messages using UDP. | |||
class UDPBroadcaster : public Socket, public MessagePort { | |||
}; | |||
// End of UDPBroadcaster class | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//// Include Inline methods and functions... | |||
#include "networking.inline.hpp" | |||
#endif | |||
// End include Networking.hpp only once... |
@@ -0,0 +1,368 @@ | |||
// networking.inline.hpp | |||
// Copyright (C) 2006-2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
//============================================================================== | |||
// Inlined methods for Networking module. See networking.hpp for notes. | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Platform Specific | |||
//// Windows platform | |||
#if defined(WIN32) || (WIN64) | |||
inline int Networking::getLastError() { // In windows you get the last error | |||
return WSAGetLastError(); // from WSAGetLastError(); | |||
} | |||
inline int Networking::setNonBlocking(hSocket socket) { // Set a winsock to non-blocking | |||
unsigned long nonblocking = 1; // Create a flag... | |||
int result = 0; | |||
if(0 != ioctlsocket(socket, FIONBIO, &nonblocking)) { // Set the state of the socket. | |||
result = -1; // If that fails then return -1. | |||
} | |||
return result; // Show 'em my motto! | |||
} | |||
inline int Networking::closeSocket(hSocket socket) { // Close a socket in winsock | |||
return closesocket(socket); // wraps closesocket(). | |||
} | |||
inline bool Networking::WouldBlock(int ErrorCode) { // ErrorCode matches [WSA]EWOULDBLOCK. | |||
return (WSAEWOULDBLOCK == ErrorCode); | |||
} | |||
inline bool Networking::InProgress(int ErrorCode) { // ErrorCode matches [WSA]EINPROGRESS. | |||
return( // [WSA]EALREADY also returns true. | |||
WSAEINPROGRESS == ErrorCode || // In fact, on Win* platforms we could | |||
WSAEALREADY == ErrorCode || // get any of these when retesting | |||
WSAEWOULDBLOCK == ErrorCode || // open() for a connection. | |||
WSAEINVAL == ErrorCode | |||
); | |||
} | |||
inline bool Networking::IsConnected(int ErrorCode) { // ErrorCode matches [WSA]EISCONN. | |||
return(WSAEISCONN == ErrorCode); | |||
} | |||
#else | |||
//// GNU platform | |||
inline int Networking::getLastError() { // In GNU you get the last error | |||
return errno; // from errno; | |||
} | |||
inline int Networking::setNonBlocking(hSocket socket) { // Set a socket to non-blocking | |||
int flags, result; // Grab a place to hold the flags. | |||
flags = fcntl(socket, F_GETFL, 0); // Get the current flags. | |||
result = fcntl(socket, F_SETFL, flags | O_NONBLOCK); // Set the NONBLOCK flag & return. | |||
return result; // Return the result. | |||
} | |||
inline int Networking::closeSocket(hSocket socket) { // Close a socket in GNU | |||
return close(socket); // wraps close(). | |||
} | |||
inline bool Networking::WouldBlock(int ErrorCode) { // ErrorCode matches [WSA]EWOULDBLOCK. | |||
return (EWOULDBLOCK == ErrorCode); | |||
} | |||
inline bool Networking::InProgress(int ErrorCode) { // ErrorCode matches [WSA]EINPROGRESS. | |||
return( // [WSA]EALREADY also returns true. | |||
EINPROGRESS == ErrorCode || | |||
EALREADY == ErrorCode | |||
); | |||
} | |||
inline bool Networking::IsConnected(int ErrorCode) { // ErrorCode matches [WSA]EISCONN. | |||
return(EISCONN == ErrorCode); | |||
} | |||
#endif | |||
// End Platform Specific | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Begin Platform Agnostic | |||
//// class IP4Address ////////////////////////////////////////////////////////// | |||
inline IP4Address::IP4Address():IP(0){} // Blank constructor IP = 0.0.0.0 | |||
inline IP4Address::IP4Address(const unsigned long int newIP):IP(newIP){} // Constructor given unsigned long | |||
inline IP4Address::IP4Address(const IP4Address& newIP):IP(newIP.IP){} // Constructor given an IP4Address | |||
inline IP4Address::IP4Address(const char* newIP) { (*this) = newIP; } // Construcing with a cstring. | |||
inline IP4Address::IP4Address(const string& newIP) { (*this) = newIP; } // Constructing with a cppstring. | |||
inline IP4Address& | |||
IP4Address::operator=(const unsigned long int Right) { IP = Right; } // Convert from unsigned long int. | |||
inline IP4Address& IP4Address::operator=(const char* Right) { // Convert from c string. | |||
IP = ntohl(inet_addr(Right)); | |||
} | |||
inline IP4Address& IP4Address::operator=(const string& Right) { // Convert from cpp string. | |||
IP = ntohl(inet_addr(Right.c_str())); | |||
} | |||
inline bool IP4Address::operator<(const IP4Address Right) const { // < Comparison. | |||
return (IP < Right.IP); | |||
} | |||
inline bool IP4Address::operator>(const IP4Address Right) const { // > Comparison. | |||
return (IP > Right.IP); | |||
} | |||
inline bool IP4Address::operator==(const IP4Address Right) const { // == Comparison. | |||
return (IP == Right.IP); | |||
} | |||
inline bool IP4Address::operator!=(const IP4Address Right) const { // != Comparison. | |||
return (IP != Right.IP); | |||
} | |||
inline bool IP4Address::operator<=(const IP4Address Right) const { // <= Comparison. | |||
return (IP <= Right.IP); | |||
} | |||
inline bool IP4Address::operator>=(const IP4Address Right) const { // >= Comparison. | |||
return (IP >= Right.IP); | |||
} | |||
//// class SocketAddress /////////////////////////////////////////////////////// | |||
inline void SocketAddress::clear() { | |||
memset(&Address, 0, sizeof(Address)); // Zero out the address strcuture | |||
Address.sin_family = AF_INET; // Internet Address Family ip4 | |||
Address.sin_addr.s_addr = htonl(INADDR_ANY); // Any IP address | |||
Address.sin_port = 0; // Zero means any port. | |||
} | |||
inline SocketAddress::SocketAddress() { // Constructor sets up w/ wildcards | |||
clear(); // Conveniently, we can use clear() :-) | |||
} | |||
inline struct sockaddr_in* SocketAddress::getPtr_sockaddr_in() { // Returns a pointer to sockaddr_in. | |||
return &Address; // Simply return it's address. | |||
} | |||
inline struct sockaddr* SocketAddress::getPtr_sockaddr() { // Returns a pointer to sockaddr. | |||
return (struct sockaddr*) &Address; | |||
} | |||
inline socklen_t SocketAddress::getAddressSize() { | |||
return sizeof(Address); // Return the size of the structure. | |||
} | |||
inline void SocketAddress::setAddress(unsigned long ipAddress) { // Set the IP address from an unsigned int | |||
Address.sin_addr.s_addr = htonl(ipAddress); // Convert to network order and assign. | |||
} | |||
inline void SocketAddress::setAddress(char* ipString) { // Set the IP address from a cstring | |||
Address.sin_addr.s_addr = inet_addr(ipString); // Convert to number and assign. | |||
} | |||
inline unsigned long SocketAddress::getAddress() { // Get the IP address as an unsigned int | |||
return ntohl(Address.sin_addr.s_addr); // Convert to host order and return. | |||
} | |||
inline void SocketAddress::setPort(unsigned short port) { // Set the port address from an int | |||
Address.sin_port = htons(port); // Convert to network order and set. | |||
} | |||
inline void SocketAddress::setPort(char* port) { // Set the port address from a cstring | |||
setPort(atoi(port)); // Convert to int and set. | |||
} | |||
inline unsigned short SocketAddress::getPort() { // Get the port address as an unsigned int | |||
return ntohs(Address.sin_port); // Convert to host order and return. | |||
} | |||
inline const char* SocketAddress::getPort(char* str) { // Get the port address into a cstring. | |||
if(NULL == str) { // If the caller did not provide a | |||
str = PortStringBuffer; // buffer to use then we will use ours. | |||
} | |||
sprintf(str,"%d",getPort()); // Get the port and convert to cstring. | |||
return str; // Return the string we got. | |||
} | |||
//// class Socket ////////////////////////////////////////////////////////////// | |||
inline Socket::Socket() : // When starting up we are | |||
Handle(INVALID_SOCKET), OpenSucceeded(false) { // not yet valid. | |||
} | |||
inline Socket::~Socket() { // When shutting down, be sure | |||
close(); // any open socket is closed. | |||
} | |||
inline void Socket::close() { // When we close, | |||
if(INVALID_SOCKET != Handle) { // If the handle is open then | |||
if(Network.closeSocket(Handle)) { // close the handle and check for error. | |||
LastError = Network.getLastError(); // If there was an error record it. | |||
if(!Network.WouldBlock(LastError)) { // If the error was not WOULDBLOCK | |||
throw Networking::ControlError( // then throw a ControlError exception. | |||
Network.DescriptiveError( | |||
"Socket::close()", LastError)); | |||
} | |||
} else { // If there was no error then | |||
LastError = 0; // reset the LastError value. | |||
} | |||
Handle = INVALID_SOCKET; // and reset the handle to INVALID. | |||
NonBlocking = false; // The default is Blocking. | |||
OpenSucceeded = false; // After close, forget we opened. | |||
} | |||
} | |||
inline hSocket Socket::getHandle() { // Returns the current Socket handle. | |||
return Handle; | |||
} | |||
inline bool Socket::isNonBlocking() { // Returns true if socket is NonBlocking | |||
return NonBlocking; | |||
} | |||
inline void Socket::makeNonBlocking() { // Sets the socket to NonBlocking mode. | |||
if(0 > Network.setNonBlocking(Handle)) { // Feed the call through Network. | |||
LastError = Network.getLastError(); // If it didn't work, go get the error. | |||
NonBlocking = false; // We are NOT NonBlocking. | |||
throw Networking::ControlError( // Throw a control error. | |||
Network.DescriptiveError( | |||
"Socket::makeNonBlocking()", LastError)); | |||
} else { | |||
NonBlocking = true; // If we didn't throw, we're ON. | |||
} | |||
} | |||
inline bool Socket::isReuseAddress() { return ReuseAddress; } // True if socket is set SO_REUSEADDR. | |||
inline bool Socket::isReuseAddress(bool set) { return (ReuseAddress = set); } // Changes SO_REUSEADDR setting. | |||
inline bool Socket::isOpen() { // True if the socket is open. | |||
return( | |||
INVALID_SOCKET != Handle && // A valid handle and | |||
true == OpenSucceeded // a successful open operation | |||
); // means we're open. | |||
} | |||
inline int Socket::getLastError() { // Returns the last error for this socket. | |||
return LastError; | |||
} | |||
//// class TCPClient /////////////////////////////////////////////////////////// | |||
inline TCPClient::TCPClient(TCPListener& L, hSocket H, SocketAddress& A) : // How to create a TCPClient. | |||
MyListener(L) { // Capture our listener. | |||
Handle = H; // Capture the new socket handle. | |||
RemoteAddress = A; // Capture the client address. | |||
ReadPointer = ReadBuffer; // Set the read position to zero. | |||
DataLength = 0; // There is no data yet. | |||
OpenSucceeded = true; // We're getting an open socket. | |||
} | |||
inline TCPClient::~TCPClient() { // When destroying a TCPClient | |||
if(isOpen()) close(); // Close when being destroyed. | |||
} | |||
inline void TCPClient::open() { // We provide open() as unsupported. | |||
throw Networking::NotSupportedError( // Throw an exception if this is called. | |||
Network.DescriptiveError( | |||
"TCPClient::open()", LastError)); | |||
} | |||
inline bool TCPClient::ReadBufferIsEmpty() { // True if the ReadBuffer is empty. | |||
return (0 >= DataLength); // We can check that with DataLength. | |||
} | |||
inline void TCPClient::fillReadBuffer() { // Fills the buffer from the socket. | |||
LastError = 0; // Clear the LastError value. | |||
ReadPointer = ReadBuffer; // Reset the ReadPointer. | |||
DataLength = recv(Handle, ReadBuffer, sizeof(ReadBuffer), NOFLAGS); // Try to read some data. | |||
if(0 >= DataLength) { // If there was an error then | |||
LastError = Network.getLastError(); // Grab the last error code. | |||
DataLength = 0; // Correct the DataLength. | |||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||
return; // simply return - it's ok. | |||
} else { // If it was a different error | |||
throw Networking::SocketReadError( // then throw a ReadError. | |||
Network.DescriptiveError( | |||
"TCPClient::fillReadBuffer()", LastError)); | |||
} | |||
} // If we succeeded then our ReadBuffer | |||
} // assembly is in good shape. | |||
inline bool TCPClient::isNonBlocking() { // Provided for MessagePort. | |||
return Socket::isNonBlocking(); | |||
} | |||
inline unsigned long TCPClient::getRemoteIP() { // Get remote IP as long. | |||
return RemoteAddress.getAddress(); | |||
} | |||
inline const char* TCPClient::getRemoteIP(char* str) { // Get IP as string. | |||
return RemoteAddress.getAddress(str); | |||
} | |||
inline unsigned short TCPClient::getRemotePort() { // Get remote Port as unsigned short. | |||
return RemoteAddress.getPort(); | |||
} | |||
inline const char* TCPClient::getRemotePort(char* str) { // Get Port as string. | |||
return RemoteAddress.getPort(str); | |||
} | |||
//// class TCPHost ///////////////////////////////////////////////////////////// | |||
inline TCPHost::~TCPHost() { // When destroying a TCPHost | |||
if(isOpen()) close(); // Close when being destroyed. | |||
} | |||
inline bool TCPHost::ReadBufferIsEmpty() { // True if the ReadBuffer is empty. | |||
return (0 >= DataLength); // We can check that with DataLength. | |||
} | |||
inline void TCPHost::fillReadBuffer() { // Fills the buffer from the socket. | |||
LastError = 0; // Clear the LastError value. | |||
ReadPointer = ReadBuffer; // Reset the ReadPointer. | |||
DataLength = recv(Handle, ReadBuffer, sizeof(ReadBuffer), NOFLAGS); // Try to read some data. | |||
if(0 >= DataLength) { // If there was an error then | |||
LastError = Network.getLastError(); // Grab the last error code. | |||
DataLength = 0; // Correct the DataLength. | |||
if(Network.WouldBlock(LastError)) { // If the error was WouldBlock then | |||
return; // simply return - it's ok. | |||
} else { // If it was a different error | |||
throw Networking::SocketReadError( // then throw a ReadError. | |||
Network.DescriptiveError( | |||
"TCPHost::fillReadBuffer()", LastError)); | |||
} | |||
} // If we succeeded then our ReadBuffer | |||
} // assembly is in good shape. | |||
inline bool TCPHost::isNonBlocking() { // Provided for MessagePort. | |||
return Socket::isNonBlocking(); | |||
} | |||
//// class TCPListener ///////////////////////////////////////////////////////// | |||
inline TCPListener::~TCPListener() { // Close when deleting. | |||
close(); | |||
} |
@@ -0,0 +1,434 @@ | |||
// threading.cpp | |||
// | |||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
// For details on the Threading module and development history see threading.hpp | |||
#include "threading.hpp" | |||
using namespace std; // Introduce std namespace. | |||
ThreadManager Threads; // Master thread manager. | |||
void ThreadManager::rememberThread(Thread* T) { // Threads register themselves. | |||
ScopeMutex ThereCanBeOnlyOne(MyMutex); // Protect the known pool. | |||
KnownThreads.insert(T); // Add the new thread pointer. | |||
} | |||
void ThreadManager::forgetThread(Thread* T) { // Threads remove themselves. | |||
ScopeMutex ThereCanBeOnlyOne(MyMutex); // Protect the known pool. | |||
KnownThreads.erase(T); // Add the new thread pointer. | |||
} | |||
ThreadStatusReport ThreadManager::StatusReport() { // Get a status report, All Threads. | |||
ScopeMutex ThereCanBeOnlyOne(MyMutex); // Protect our set -- a moment in time. | |||
ThreadStatusReport Answer; // Create our vector to hold the report. | |||
for( // Loop through all of the Threads. | |||
set<Thread*>::iterator iT = KnownThreads.begin(); | |||
iT != KnownThreads.end(); iT++ | |||
) { // Grab each Threads' report. | |||
Thread& X = *(*iT); // Handy reference to the Thread. | |||
Answer.push_back(X.StatusReport()); // Push back each Thread's report. | |||
} | |||
return Answer; // Return the finished report. | |||
} | |||
bool ThreadManager::lockExistingThread(Thread* T) { // Locks ThreadManager if T exists. | |||
MyMutex.lock(); // Lock the mutex for everyone. | |||
if(KnownThreads.end() == KnownThreads.find(T)) { // If we do not find T in our set | |||
MyMutex.unlock(); // then unlock the mutex and return | |||
return false; // false. | |||
} // If we did find it then | |||
LockedThread = T; // set our locked thread and | |||
return true; // return true; | |||
} | |||
// We use assert() in the code below because if these conditions fail then there | |||
// is something seriously wrong and potentially dangerous with the calling code. | |||
void ThreadManager::unlockExistingThread(Thread* T) { // Unlocks ThreadManager if T locked. | |||
assert(0 != LockedThread); // We had better have a locked thread. | |||
assert(T == LockedThread); // The locked thread had better match. | |||
LockedThread = 0; // Clear the locked thread. | |||
MyMutex.unlock(); // Unlock the mutex. | |||
} | |||
//// Scope Thread Lock allows for a safe way to lock threads through the Threads | |||
//// object for delivering short messages. Just like a ScopeMutex, when the object | |||
//// goes away the lock is released. | |||
ScopeThreadLock::ScopeThreadLock(Thread* T) : // Construct a scope lock on a Thread. | |||
MyLockedThread(0) { // To star with we have no lock. | |||
if(Threads.lockExistingThread(T)) { // If we achieve a lock then we | |||
MyLockedThread = T; // remember it. Our destructor will | |||
} // unlock it if we were successful. | |||
} | |||
ScopeThreadLock::~ScopeThreadLock() { // Destruct a scope lock on a Thread. | |||
if(0 != MyLockedThread) { // If we were successfully constructed | |||
Threads.unlockExistingThread(MyLockedThread); // we can unlock the thread and | |||
MyLockedThread = 0; // forget about it before we go away. | |||
} | |||
} | |||
bool ScopeThreadLock::isGood() { // If we have successfully locked T | |||
return (0 != MyLockedThread) ? true:false; // it will NOT be 0, so return true. | |||
} | |||
bool ScopeThreadLock::isBad() { // If we did not successfully lock T | |||
return (0 == MyLockedThread) ? false:true; // it will be 0, so return false. | |||
} | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Thread | |||
const ThreadType Thread::Type("Generic Thread"); | |||
const ThreadState Thread::ThreadInitialized("Thread Initialized"); | |||
const ThreadState Thread::ThreadStarted("Thread Started"); | |||
const ThreadState Thread::ThreadFailed("Thread Failed"); | |||
const ThreadState Thread::ThreadStopped("Thread Stopped"); | |||
const ThreadState Thread::ThreadDestroyed("Thread Destroyed"); | |||
bool Thread::isRunning() { return RunningFlag; } // Return RunningFlag state. | |||
bool Thread::isBad() { return BadFlag; } // Return BadFlag state. | |||
const string Thread::MyFault() { return BadWhat; } // Return exception Bad fault if any. | |||
const string Thread::MyName() { return MyThreadName; } // Return the instance name if any. | |||
const ThreadType& Thread::MyType() { return MyThreadType; } // Return the instance Thread Type. | |||
const ThreadState& Thread::MyState() { return (*MyThreadState); } // Thread state for this instance. | |||
void Thread::CurrentThreadState(const ThreadState& TS) { // Set Current Thread State. | |||
MyThreadState = const_cast<ThreadState*>(&TS); | |||
} | |||
const ThreadState& Thread::CurrentThreadState() { return (*MyThreadState); } // Get Current Thread State. | |||
ThreadStatusRecord Thread::StatusReport() { // Get a status report from this thread. | |||
return | |||
ThreadStatusRecord( // Status record. | |||
this, | |||
const_cast<ThreadType&>(MyThreadType), | |||
*MyThreadState, | |||
RunningFlag, | |||
BadFlag, | |||
BadWhat, | |||
MyThreadName | |||
); | |||
} | |||
// launchTask() calls and monitors myTask for exceptions and set's the correct | |||
// states for the isBad and isRunning flags. | |||
void Thread::launchTask() { // Launch and watch myTask() | |||
try { // Do this safely. | |||
RunningFlag = true; // Now we are running. | |||
CurrentThreadState(ThreadStarted); // Set the running state. | |||
myTask(); // myTask() is called. | |||
} // myTask() should handle exceptions. | |||
catch(exception& e) { // Unhandled exceptions are informative: | |||
BadFlag = true; // They mean the thread went bad but | |||
BadWhat = e.what(); // we have an idea what went wrong. | |||
} // We shouldn't get other kinds of | |||
catch(...) { // exceptions because if things go | |||
BadFlag = true; // wrong and one gets through this | |||
BadWhat = "Unkown Exception(...)"; // is all we can say about it. | |||
} | |||
RunningFlag = false; // When we're done, we're done. | |||
if(BadFlag) CurrentThreadState(ThreadFailed); // If we're bad we failed. | |||
else CurrentThreadState(ThreadStopped); // If we're not bad we stopped. | |||
} | |||
// getMyThread() returns the local thread primative. | |||
thread_primative Thread::getMyThread() { return MyThread; } // Return my thread primative. | |||
// runThreadTask() is a helper function to start threads. It is the function | |||
// that is acutally launched as a new thread. It's whole job is to call the | |||
// myTask() method on the object passed to it as it is launched. | |||
// The run() method creates a new thread with ThreadRunner() as the main | |||
// function, having passed it's object. | |||
// WIN32 and POSIX have different versions of both the main thread function | |||
// and the way to launch it. | |||
#ifdef WIN32 | |||
Thread::Thread() : // When constructing a WIN32 thread | |||
MyThreadType(Thread::Type), // Use generic Thread Type. | |||
MyThreadName("UnNamed Thread"), // Use a generic Thread Name. | |||
RunningFlag(false), // Couldn't be running yet. | |||
BadFlag(false), // Couldn't be bad yet. | |||
MyThread(NULL) { // Null the thread handle. | |||
Threads.rememberThread(this); // Remember this thread. | |||
CurrentThreadState(ThreadInitialized); // Set our initialized state. | |||
} | |||
Thread::Thread(const ThreadType& T, const string N) : // Construct with specific Type/Name | |||
MyThreadType(T), // Use generic Thread Type. | |||
MyThreadName(N), // Use a generic Thread Name. | |||
RunningFlag(false), // Couldn't be running yet. | |||
BadFlag(false), // Couldn't be bad yet. | |||
MyThread(NULL) { // Null the thread handle. | |||
Threads.rememberThread(this); // Remember this thread. | |||
CurrentThreadState(ThreadInitialized); // Set our initialized state. | |||
} | |||
Thread::~Thread() { // In WIN32 land when we destroy the | |||
if(NULL != MyThread) { // thread object check for a valid | |||
CloseHandle(MyThread); // thread handle and destroy it if | |||
} // it exists. | |||
RunningFlag = false; // The thread is not running. | |||
Threads.forgetThread(this); // Forget this thread. | |||
CurrentThreadState(ThreadDestroyed); // The Thread has left the building. | |||
} | |||
unsigned __stdcall runThreadTask(void* thread_object) { // The WIN32 version has this form. | |||
((Thread*)thread_object)->launchTask(); | |||
} | |||
void Thread::run() { // Run a WIN32 thread... | |||
unsigned tid; // Thread id to toss. Only need Handle. | |||
MyThread = (HANDLE) _beginthreadex(NULL,0,runThreadTask,this,0,&tid); // Create a thread calling ThreadRunner | |||
if(NULL == MyThread) BadFlag = true; // and test that the resutl was valid. | |||
} | |||
void Thread::join() { // To join in WIN32 | |||
WaitForSingleObject(MyThread, INFINITE); // Wait for the thread by handle. | |||
} | |||
#else | |||
Thread::Thread() : // POSIX Thread constructor. | |||
MyThreadType(Thread::Type), // Use a generic Thread Type. | |||
MyThreadName("UnNamed Thread"), // Use a generic Thread Name. | |||
RunningFlag(false), // Can't be running yet. | |||
BadFlag(false) { // Can't be bad yet. | |||
Threads.rememberThread(this); // Remember this thread. | |||
CurrentThreadState(ThreadInitialized); // Set our initialized state. | |||
} | |||
Thread::Thread(const ThreadType& T, const string N) : // POSIX Specific Thread Constructor. | |||
MyThreadType(T), // Use a generic Thread Type. | |||
MyThreadName(N), // Use a generic Thread Name. | |||
RunningFlag(false), // Can't be running yet. | |||
BadFlag(false) { // Can't be bad yet. | |||
Threads.rememberThread(this); // Remember this thread. | |||
CurrentThreadState(ThreadInitialized); // Set our initialized state. | |||
} | |||
Thread::~Thread() { // POSIX destructor. | |||
RunningFlag = false; // Not running now for sure. | |||
Threads.forgetThread(this); // Forget this thread. | |||
CurrentThreadState(ThreadDestroyed); // The Thread has left the building. | |||
} | |||
void* runThreadTask(void* thread_object) { // The POSIX version has this form. | |||
((Thread*)thread_object)->launchTask(); | |||
} | |||
void Thread::run() { // Run a POSIX thread... | |||
int result = pthread_create(&MyThread, NULL, runThreadTask, this); // Create a thread calling ThreadRunner | |||
if(0 != result) BadFlag = true; // and test that there was no error. | |||
} | |||
void Thread::join() { // To join in POSIX | |||
pthread_join(MyThread, NULL); // call pthread_join with MyThread. | |||
} | |||
#endif | |||
// End Thread | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Mutex | |||
#ifdef WIN32 | |||
// WIN32 Mutex Implementation ////////////////////////////////////////////////// | |||
// The original design of the WIN32 Mutex used critical sections. However after | |||
// additional research it was determined that the use of a Semaphore with an | |||
// initial count of 1 would work better overall on multiple Winx platforms - | |||
// especially SMP systems. | |||
Mutex::Mutex() : // Creating a WIN32 Mutex means | |||
IAmLocked(false) { // Setting IAmLocked to false and | |||
MyMutex = CreateSemaphore(NULL, 1, 1, NULL); // create a semaphore object with | |||
assert(NULL != MyMutex); // a count of 1. | |||
} | |||
Mutex::~Mutex() { // Destroying a WIN32 Mutex means | |||
assert(false == IAmLocked); // Make sure we're not in use and | |||
CloseHandle(MyMutex); // destroy the semaphore object. | |||
} | |||
bool Mutex::tryLock() { // Trying to lock WIN32 Mutex means | |||
bool DoIHaveIt = false; // Start with a pessimistic assumption | |||
if( | |||
false == IAmLocked && // If we have a shot at this and | |||
WAIT_OBJECT_0 == WaitForSingleObject(MyMutex, 0) // we actually get hold of the semaphore | |||
) { // then we can set our flags... | |||
IAmLocked = true; // Set IAmLocked, because we are and | |||
DoIHaveIt = true; // set our result to true. | |||
} | |||
return DoIHaveIt; // Return true if we got it (see above). | |||
} | |||
void Mutex::lock() { // Locking the WIN32 Mutex means | |||
assert(WAIT_OBJECT_0 == WaitForSingleObject(MyMutex, INFINITE)); // Wait on the semaphore - only 1 will | |||
IAmLocked = true; // get through or we have a big problem. | |||
} | |||
void Mutex::unlock() { // Unlocking the WIN32 Mutex means | |||
assert(true == IAmLocked); // making sure we're really locked then | |||
IAmLocked = false; // reset the IAmLocked flag and | |||
ReleaseSemaphore(MyMutex, 1, NULL); // release the semaphore. | |||
} | |||
bool Mutex::isLocked() { return IAmLocked; } // Return the IAmLocked flag. | |||
#else | |||
// POSIX Mutex Implementation ////////////////////////////////////////////////// | |||
Mutex::Mutex() : // Constructing a POSIX mutex means | |||
IAmLocked(false) { // setting the IAmLocked flag to false and | |||
assert(0 == pthread_mutex_init(&MyMutex,NULL)); // initializing the mutex_t object. | |||
} | |||
Mutex::~Mutex() { // Before we destroy our mutex we check | |||
assert(false == IAmLocked); // to see that it is not locked and | |||
assert(0 == pthread_mutex_destroy(&MyMutex)); // destroy the primative. | |||
} | |||
void Mutex::lock() { // Locking a POSIX mutex means | |||
assert(0 == pthread_mutex_lock(&MyMutex)); // asserting our lock was successful and | |||
IAmLocked = true; // setting the IAmLocked flag. | |||
} | |||
void Mutex::unlock() { // Unlocking a POSIX mutex means | |||
assert(true == IAmLocked); // asserting that we are locked, | |||
IAmLocked = false; // clearing the IAmLocked flag. | |||
assert(0 == pthread_mutex_unlock(&MyMutex)); // asserting our unlock was successful and | |||
} | |||
bool Mutex::tryLock() { // Trying to lock a POSIX mutex means | |||
bool DoIHaveIt = false; // starting off pessimistically. | |||
if(false == IAmLocked) { // If we are not locked yet then we | |||
if(0 == pthread_mutex_trylock(&MyMutex)) { // try to lock the mutex. If we succeed | |||
DoIHaveIt = IAmLocked = true; // we set our IAmLocked flag and our | |||
} // DoIHaveIt flag to true; | |||
} | |||
return DoIHaveIt; // In any case we return the result. | |||
} | |||
bool Mutex::isLocked() { return IAmLocked; } // Return the IAmLocked flag. | |||
#endif | |||
// End Mutex | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// ScopeMutex | |||
ScopeMutex::ScopeMutex(Mutex& M) : // When constructing a ScopeMutex, | |||
MyMutex(M) { // Initialize MyMutex with what we are given | |||
MyMutex.lock(); // and then immediately lock it. | |||
} | |||
ScopeMutex::~ScopeMutex() { // When a ScopeMutex is destroyed, | |||
MyMutex.unlock(); // it first unlocks it's mutex. | |||
} | |||
// End ScopeMutex | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Production Gateway | |||
#ifdef WIN32 | |||
// Win32 Implementation //////////////////////////////////////////////////////// | |||
ProductionGateway::ProductionGateway() { // Construct in Windows like this: | |||
const int HUGENUMBER = 0x7fffffL; // Work without any real limits. | |||
MySemaphore = CreateSemaphore(NULL, 0, HUGENUMBER, NULL); // Create a Semaphore for signalling. | |||
assert(NULL != MySemaphore); // That should always work. | |||
} | |||
ProductionGateway::~ProductionGateway() { // Be sure to close it when we're done. | |||
CloseHandle(MySemaphore); | |||
} | |||
void ProductionGateway::produce() { // To produce() in WIN32 we | |||
ReleaseSemaphore(MySemaphore, 1, NULL); // release 1 count into the semaphore. | |||
} | |||
void ProductionGateway::consume() { // To consume() in WIN32 we | |||
WaitForSingleObject(MySemaphore, INFINITE); // wait for a count in the semaphore. | |||
} | |||
#else | |||
// POSIX Implementation //////////////////////////////////////////////////////// | |||
ProductionGateway::ProductionGateway() : // Construct in POSIX like this: | |||
Product(0), // All of our counts start at zero. | |||
Waiting(0), | |||
Signaled(0) { | |||
assert(0 == pthread_mutex_init(&MyMutex, NULL)); // Initialize our mutex. | |||
assert(0 == pthread_cond_init(&MyConditionVariable, NULL)); // Initialize our condition variable. | |||
} | |||
ProductionGateway::~ProductionGateway() { // When we're done we must destroy | |||
assert(0 == pthread_mutex_destroy(&MyMutex)); // our local mutex and | |||
assert(0 == pthread_cond_destroy(&MyConditionVariable)); // our condition variable. | |||
} | |||
void ProductionGateway::produce() { // To produce in POSIX | |||
assert(0 == pthread_mutex_lock(&MyMutex)); // Lock our mutex. | |||
++Product; // Add an item to our product count. | |||
if(Signaled < Waiting) { // If anybody is waiting that has not | |||
assert(0 == pthread_cond_signal(&MyConditionVariable)); // yet been signaled then signal them | |||
++Signaled; // and keep track. They will count this | |||
} // down as they awaken. | |||
assert(0 == pthread_mutex_unlock(&MyMutex)); // At the end unlock our mutex so | |||
} // waiting threads can fly free :-) | |||
void ProductionGateway::consume() { // To consume in POSIX | |||
assert(0 == pthread_mutex_lock(&MyMutex)); // Lock our mutex. | |||
while(0 >= Product) { // Until we have something to consume, | |||
++Waiting; // wait for a signal from | |||
assert(0 == pthread_cond_wait(&MyConditionVariable, &MyMutex)); // our producer. When we have a signal | |||
--Waiting; // we are done waiting and we have | |||
--Signaled; // been signaled. Of course, somebody | |||
} // may have beaten us to it so check. | |||
--Product; // If we have product then take it. | |||
assert(0 == pthread_mutex_unlock(&MyMutex)); // At the end unlock our mutex so | |||
} | |||
#endif | |||
// End Production Gateway | |||
//////////////////////////////////////////////////////////////////////////////// |
@@ -0,0 +1,440 @@ | |||
// threading.hpp | |||
// | |||
// (C) 2006 - 2009 MicroNeil Research Corporation. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
// The "Threading" module is a basic, cross-platform, multi-threading tool kit. | |||
// The differences between posix compatible systems and win32 based systems are | |||
// abstracted. On win32 systems, native win32 primatives are used to construct. | |||
// efficient, lightweight objects. | |||
// On others we assume we can use pthreads. In either case the objects we have | |||
// here are designed to cover all of the basics efficiently while hiding the | |||
// required under-cover work. | |||
// A lot of this module is coded here in the header with the inline keyword | |||
// because it is likely that the more basic objects can be efficiently compiled | |||
// as inline abstractions to native calls. Really basic systems won't need | |||
// anything beyond what is in this file. | |||
// 20070202.1601 _M Further research has suggested that using a Semaphore in | |||
// WIN32 environments in place of a CRITICAL_SECTION may provide the best | |||
// performance and stability on all platforms. Specifically, SMP platforms may | |||
// race and waste resources with CRITICAL_SECTIONs and in those cases it is | |||
// recommended that the CRITICAL_SECTIONs may be "throttled" using Semaphores | |||
// to limit the number of threads that may contend for a critical section. It | |||
// is also suggested that if the Semaphore has an initialization value of 1 | |||
// the CRITICAL_SECTION is redundant. So this code has been modified to do | |||
// precisely that! | |||
// | |||
// This new version also includes a ProductionGateway object that simplifies | |||
// the producer/consumer model. The object keeps track of the number of calls | |||
// to produce() and consume() and ensures that threads will block on consume() | |||
// until a sufficient number of calls to produce() are made. That is, for every | |||
// one call to produce(), a call to consume() will be allowed to proceed. The | |||
// object also allows for the potentially asynchronous nature of these calls. | |||
// 20070530.1751 _M Added top level exception handling in threads along with | |||
// isRunning() and isBad() methods. | |||
// 20060528.1647 _M All of the basics are complete and tested on both WIN32 and | |||
// RHEL4 single and multiple processors. | |||
// Include MNR_threading Once Only ============================================= | |||
#ifndef MNR_threading | |||
#define MNR_threading | |||
#include <cassert> | |||
#include <set> | |||
#include <vector> | |||
#include <string> | |||
using namespace std; | |||
class ThreadManager; // ThreadManager does exist. | |||
extern ThreadManager Threads; // Master thread manager. | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Thread Status & Type | |||
// | |||
// ThreadState objects are constant static objects defined for each Thread class | |||
// so that the thread can update it's state by changing a pointer. The state | |||
// can then be compared between threads of the same type and can be read-out | |||
// as text for debugging purposes. | |||
class ThreadState { // Thread State Object. | |||
public: | |||
const string Name; // Text name of thread descriptor. | |||
ThreadState(string N) : Name(N) {} // Constructor requires text name. | |||
}; | |||
// ThreadType objects are constant static objects defined for each Thread class | |||
// so that classes can be identified by type using a pointer to the constant. | |||
class ThreadType { | |||
public: | |||
const string Name; | |||
ThreadType(string N) : Name(N) {} | |||
}; | |||
class Thread; // There is such thing as a Thread. | |||
class ThreadStatusRecord { // Describes a Thread's condition. | |||
private: | |||
Thread* Pointer; // A pointer to the thread. | |||
ThreadType* Type; // A descriptor of it's type. | |||
ThreadState* State; // A descriptor of it's state. | |||
string Name; // Name of the thread if any. | |||
bool isRunning; // True if the thread is running. | |||
bool isBad; // True if the thread is bad. | |||
string Fault; // Bad Thread's Fault if any. | |||
public: | |||
ThreadStatusRecord( // Initialize all items. | |||
Thread* P, | |||
ThreadType& T, | |||
ThreadState& S, | |||
bool R, | |||
bool B, | |||
string F, | |||
string N | |||
) : | |||
Pointer(P), | |||
Type(&T), | |||
State(&S), | |||
isRunning(R), | |||
isBad(B), | |||
Fault(F), | |||
Name(N) | |||
{} | |||
ThreadStatusRecord& operator=(const ThreadStatusRecord& Right) { // Minimal Assignment Operator | |||
Pointer = Right.Pointer; | |||
Type = Right.Type; | |||
State = Right.State; | |||
isRunning = Right.isRunning; | |||
isBad = Right.isBad; | |||
Fault = Right.Fault; | |||
Name = Right.Name; | |||
} | |||
bool operator<(const ThreadStatusRecord& Right) { // Minimal Comparison Operator. | |||
return (Pointer < Right.Pointer); | |||
} | |||
// How to get the details of the report. | |||
const Thread* getPointer() { return Pointer; } | |||
const ThreadType& getType() { return *Type; } | |||
const ThreadState& getState() { return *State; } | |||
bool getRunning() { return isRunning; } | |||
bool getBad() { return isBad; } | |||
string getFault() { return Fault; } | |||
string getName() { return Name; } | |||
}; | |||
typedef vector<ThreadStatusRecord> ThreadStatusReport; // Status report type. | |||
// End ThreadDescriptor | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// Win32 / POSIX abstractions | |||
#ifdef WIN32 | |||
// When in WIN32 land... | |||
// Remember to compile (on GNU anyway) with -mthreads | |||
#include <windows.h> | |||
#include <process.h> | |||
typedef HANDLE thread_primative; // The WIN32 thread primative abstracts | |||
// HANDLE | |||
typedef HANDLE mutex_primative; // The WIN32 mutex primative abstracts | |||
// a HANDLE to a Semaphore. | |||
inline void threading_yield() { // When we want to yield time in WIN32 | |||
SwitchToThread(); // we call SwitchToThread(); | |||
} | |||
#else | |||
// When in POSIX land... | |||
// Remember to compile (on GMU anyway) with -pthread | |||
#include <pthread.h> | |||
#include <sched.h> | |||
typedef pthread_t thread_primative; // The POSIX thread primative abstracts | |||
// pthread_t | |||
typedef pthread_mutex_t mutex_primative; // The POSIX mutex primative abstracts | |||
// pthread_mutex_t | |||
inline void threading_yield() { // When we want to yield time in POSIX | |||
sched_yield(); // we call sched_yield(); | |||
} | |||
#endif | |||
// End Win32 / POSIX abstractions | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// The Thread class gets extended to do any specific work. The pure virtual | |||
// function MyTask is overloaded by the derived class to define that work. It | |||
// is expected that the class will be initialized with any parameters that | |||
// will be used by the thread and that the thread will make available any | |||
// results through public interfaces either during and/or after the thread | |||
// has finished running. | |||
class Thread { | |||
private: | |||
ThreadState* MyThreadState; // Track current thread state. | |||
protected: | |||
const ThreadType& MyThreadType; // Identify thread type. | |||
const string MyThreadName; // Name string of this instance. | |||
thread_primative MyThread; // Abstracted thread. | |||
bool RunningFlag; // True when thread is in myTask() | |||
bool BadFlag; // True when myTask() throws! | |||
string BadWhat; // Bad exception what() if any. | |||
void CurrentThreadState(const ThreadState& TS); // Set thread state. | |||
public: | |||
Thread(); // Constructor (just in case) | |||
Thread(const ThreadType& T, string N); // Construct with specific Type/Name | |||
~Thread(); // Destructor (just in case) | |||
void run(); // Method to launch this thread. | |||
void join(); // Method to Join this thread. | |||
void launchTask(); // Launch and watch myTask(). | |||
virtual void myTask() = 0; // The actual task must be overloaded. | |||
thread_primative getMyThread(); // Inspect my thread primative. | |||
bool isRunning(); // Return the Running flag state. | |||
bool isBad(); // Return the Bad flag state. | |||
const string MyFault(); // Return exception Bad fault if any. | |||
const string MyName(); // The thread's name. | |||
const ThreadType& MyType(); // Thread type for this thread. | |||
const ThreadState& MyState(); // Returns the current thread state. | |||
const ThreadState& CurrentThreadState(); // Returns the current thread state. | |||
ThreadStatusRecord StatusReport(); // Return's the thread's status reprt. | |||
// Constants for Thread... | |||
const static ThreadType Type; // The thread's type. | |||
const static ThreadState ThreadInitialized; // Constructed successfully. | |||
const static ThreadState ThreadStarted; // Started. | |||
const static ThreadState ThreadFailed; // Failed by unhandled exception. | |||
const static ThreadState ThreadStopped; // Stopped normally. | |||
const static ThreadState ThreadDestroyed; // Safety value for destructed Threads. | |||
}; | |||
// End Thread | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// The Mutex class abstracts a lightweight, very basic mutex object. | |||
// As with the Thread object, more ellaborate forms can be built up from | |||
// this basic mechanism. An important design constraint for this basic | |||
// mutex object is that it work even if the thread that's running was not | |||
// created with the Thread object... that ensures that it can be used in | |||
// code that is destined to function in other applications. | |||
class Mutex { | |||
private: | |||
mutex_primative MyMutex; // Here is our primative mutex. | |||
volatile bool IAmLocked; // Here is our Lock Count. | |||
public: | |||
Mutex(); // Construct the mutex. | |||
~Mutex(); // Destroy the mutex. | |||
void lock(); // Lock it. | |||
void unlock(); // Unlock it. | |||
bool tryLock(); // Try to lock it. | |||
bool isLocked(); // Check to see if it's locked. | |||
}; | |||
// End of Mutex | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// ScopeMutex | |||
// A ScopeMutex is a nifty trick for locking a mutex during some segment of | |||
// code. On construction, it locks the Mutex that it is given and keeps it | |||
// locked until it is destroyed. Of course this also means that it will unlock | |||
// the mutex when it goes out of scope - which is precisely the point :-) | |||
// | |||
// The right way to use a ScopeMutex is to create it just before you need to | |||
// have control and then forget about it. From a design perspective, you might | |||
// want to make sure that whatever happens after the ScopeMutex has been | |||
// created is as short as possible and if it is not then you may want to | |||
// use the Mutex directly. | |||
// | |||
// The best place to use a ScopeMutex is where you might leave the controling | |||
// bit of code through a number of logical paths such as a logic tree or even | |||
// due to some exceptions. In this context it saves you having to track down | |||
// all of the possible cases and unlock the mutex in each of them. | |||
class ScopeMutex { | |||
private: | |||
Mutex& MyMutex; // ScopeMutex has an ordinary Mutex to use. | |||
public: | |||
ScopeMutex(Mutex& M); // Constructing a ScopeMutex requires a Mutex | |||
~ScopeMutex(); // We do have special code for descrution. | |||
}; | |||
// End ScopeMutex | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// ProductionGateway | |||
// A ProductionGateway encapsulates the thread synchronization required for a | |||
// producer / consumer relationship. For each call to the produce() method one | |||
// call to the consume() method can proceed. The object takes into account that | |||
// these methods may be called out of sequence and that, for example, produce() | |||
// might be called several times before any calls to consume. | |||
#ifdef WIN32 | |||
// Win32 Implementation //////////////////////////////////////////////////////// | |||
class ProductionGateway { | |||
private: | |||
HANDLE MySemaphore; // WIN32 makes this one easy w/ a 0 semi. | |||
public: | |||
ProductionGateway(); // The constructor and destructor handle | |||
~ProductionGateway(); // creating and destroying the semi. | |||
void produce(); // Produce "releases" the semi. | |||
void consume(); // Consume "waits" if needed. | |||
}; | |||
#else | |||
// POSIX Implementation //////////////////////////////////////////////////////// | |||
class ProductionGateway { // Posix needs a few pieces for this. | |||
private: | |||
mutex_primative MyMutex; // Mutex to protect the data. | |||
pthread_cond_t MyConditionVariable; // A condition variable for signaling. | |||
int Product; // A count of unused calls to produce() | |||
int Waiting; // A count of waiting threads. | |||
int Signaled; // A count of signaled threads. | |||
public: | |||
ProductionGateway(); // The constructor and destructor handle | |||
~ProductionGateway(); // creating and destroying the semi. | |||
void produce(); // Produce "releases" the semi. | |||
void consume(); // Consume "waits" if needed. | |||
}; | |||
#endif | |||
// End ProductionGateway | |||
//////////////////////////////////////////////////////////////////////////////// | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// The ThreadManager class provides a global thread management tool. All Thread | |||
// objects register themselves with the Threads object upon construction and | |||
// remove themselves from the registry upon destruction. The Threads object can | |||
// produce a status report for all of the known threads on the system and can | |||
// temporarily lock the existing thread so that it can be contacted reliably. | |||
// locking and unlocking the ThreadManager is intended only for short messages | |||
// that set flags in the thread or pass some small data packet. The lock only | |||
// prevents the thread from being destroyed before the message can be sent so | |||
// that the thread that owns the threadlock will not make any calls to a dead | |||
// pointer. Most apps should be designed so that the threadlock mechanism is | |||
// not required. | |||
class ThreadManager { // Central manager for threads. | |||
friend class Thread; // Threads are friends. | |||
private: | |||
Mutex MyMutex; // Protect our data with this. | |||
set<Thread*> KnownThreads; // Keep track of all threads. | |||
void rememberThread(Thread* T); // Threads register themselves. | |||
void forgetThread(Thread* T); // Threads remove themselves. | |||
Thread* LockedThread; // Pointer to locked thread if any. | |||
public: | |||
ThreadManager():LockedThread(0){} // Initialize nice and clean. | |||
ThreadStatusReport StatusReport(); // Get a status report. | |||
bool lockExistingThread(Thread* T); // Locks ThreadManager if T exists. | |||
void unlockExistingThread(Thread* T); // Unlocks ThreadManager if T locked. | |||
}; | |||
class ScopeThreadLock { // This is like a ScopeMutex for | |||
private: // the ThreadManager. | |||
Thread* MyLockedThread; // It needs to know it's Thread. | |||
public: | |||
ScopeThreadLock(Thread* T); // Locks T in ThreadManager if it can. | |||
~ScopeThreadLock(); // Unlocks T in ThreadManager if locked. | |||
bool isGood(); // True if T was locked. | |||
bool isBad(); // False if T was not locked. | |||
}; | |||
// End Thread Manager | |||
//////////////////////////////////////////////////////////////////////////////// | |||
#endif | |||
// End Of Include MNR_threading Once Only ====================================== |
@@ -0,0 +1,325 @@ | |||
// timing.cpp | |||
// | |||
// Copyright (C) 2006 - 2009 MicroNeil Research Corporation. | |||
// | |||
// See the corresponding .hpp file for descriptions and history. | |||
// | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
#include <ctime> | |||
#include <sys/time.h> | |||
#include <cerrno> | |||
// Platform Specific Includes ////////////////////////////////////////////////// | |||
#ifdef WIN32 | |||
#include <windows.h> | |||
#endif | |||
#include "timing.hpp" | |||
// Introduce the standard namespace //////////////////////////////////////////// | |||
using namespace std; | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class Sleeper - An object that remembers how long it is supposed to sleep. | |||
// This allows an application to create "standard" sleep timers. This also | |||
// helps keep sleeper values within range to avoid weird timing problems. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// Abstracted doRawSleep() function //////////////////////////////////////////// | |||
#ifdef WIN32 | |||
// In a WIN32 environment Sleep() is defined and it works in milliseconds so | |||
// we will use that for doRawSleep(). It's important to note that under normal | |||
// circumstances win32 Sleep() may be off by quite a bit (15ms or so) due to | |||
// how timing is done in the OS. There are ways around this, but they are | |||
// sometimes complex - so here I've left things basic. If more precise win32 | |||
// timing is needed then this method can be recoded using a workaround that is | |||
// appropriate to the application. | |||
void Sleeper::doRawSleep(int x) { | |||
Sleep(x); // Use windows Sleep() | |||
} | |||
#else | |||
// If we are not in a win32 environment then we're likely on a posix/unix system | |||
// or at least we have the standard posix/unix time functions so we'll redefine | |||
// absSleep to use nanosleep(); | |||
void Sleeper::doRawSleep(int x) { | |||
struct timespec sleeptime; // How much sleeping to do. | |||
struct timespec remaining; // How much sleeping remains. | |||
int result; // The latest result. | |||
remaining.tv_sec = x/1000; // Divide ms by 1000 to get secs. | |||
remaining.tv_nsec = (x%1000)*1000000; // Multiply the remaining msecs to get nsecs. | |||
do { // Just in case we get interruped... | |||
sleeptime.tv_sec = remaining.tv_sec; // Get our sleep time from the | |||
sleeptime.tv_nsec = remaining.tv_nsec; // remaining time. | |||
result = nanosleep(&sleeptime,&remaining); // Call nanosleep and get the remaining time. | |||
} while(0>result && EINTR==errno); // If we were interrupted sleep some more. | |||
} | |||
#endif | |||
Sleeper::Sleeper() // Constructed empty we set our | |||
:MillisecondsToSleep(0) { // sleep time to zero. | |||
} | |||
Sleeper::Sleeper(int x) { // Constructed with a value we | |||
setMillisecondsToSleep(x); // set the sleep time or throw. | |||
} | |||
int Sleeper::setMillisecondsToSleep(int x) { // Safe way to set the vlaue. | |||
if(x < MinimumSleeperTime || | |||
x > MaximumSleeperTime) // If it's not a good time value | |||
throw BadSleeperValue(); // then throw the exception. | |||
MillisecondsToSleep = x; // If it is good - set it. | |||
} | |||
int Sleeper::getMillisecondsToSleep() { // Safe way to get the value. | |||
return MillisecondsToSleep; // Send back the value. | |||
} | |||
void Sleeper::sleep() { // Here's where we snooze. | |||
if(MillisecondsToSleep > 0) { // If we have a good snooze | |||
doRawSleep(MillisecondsToSleep); // value then go to Sleep(). | |||
} else { // If the value is not good | |||
throw BadSleeperValue(); // throw an exception. | |||
} | |||
} | |||
void Sleeper::sleep(int x) { // Reset the sleep time then sleep. | |||
setMillisecondsToSleep(x); // Set the sleep time. | |||
sleep(); // Sleep. | |||
} | |||
void Sleeper::operator()() { // Syntactic sugar - operator() on | |||
sleep(); // a sleeper calls sleep(). | |||
} | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class PollTimer - An object to pause during polling processes where the | |||
// time between polls is expanded according to a Fibonacci sequence. This | |||
// allows self organizing automata to relax a bit when a particular process | |||
// is taking a long time so that the resources used in the polling process are | |||
// reduced if the system is under load - The idea is to prevent the polling | |||
// process from loading the system when there are many nodes poling, yet to | |||
// allow for a rapid response when there are few or when the answer we're | |||
// waiting for is ready quickly. We use a Fibonacci expansion because it is | |||
// a natural spiral. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
PollTimer::PollTimer(int Nom, int Max) { // Construction requires a | |||
setNominalPollTime(Nom); // nominal delay to use and | |||
setMaximumPollTime(Max); // a maximum delay to allow. | |||
} | |||
int PollTimer::setNominalPollTime(int Nom) { // Set the Nominal Poll Time. | |||
if(Nom < MinimumSleeperTime || // Check the low and high | |||
Nom > MaximumSleeperTime) // limits and throw an | |||
throw BadPollTimerValue(); // exception if we need to. | |||
// If the value is good then | |||
NominalPollTime = Nom; // remember it. | |||
if(MaximumPollTime < NominalPollTime) // Make sure the Maximum poll | |||
MaximumPollTime = NominalPollTime; // time is > the Nominal time. | |||
reset(); // Reset due to the change. | |||
return NominalPollTime; // Return the new value. | |||
} | |||
int PollTimer::setMaximumPollTime(int Max) { // Set the Maximum Poll Time. | |||
if(Max < MinimumSleeperTime || // Check the low and high | |||
Max > MaximumSleeperTime) // limits and throw an | |||
throw BadPollTimerValue(); // exception if we need to. | |||
// If the value is good then | |||
MaximumPollTime = Max; // remember it. | |||
if(MaximumPollTime < NominalPollTime) // Make sure the Maximum poll | |||
MaximumPollTime = NominalPollTime; // time is >= the Nominal time. | |||
reset(); // Reset due to the change. | |||
return MaximumPollTime; // Return the new value. | |||
} | |||
void PollTimer::reset() { // Reset the spiral. | |||
FibA = NominalPollTime; // Assume our starting event. | |||
FibB = 0; // Assume no other events. | |||
LimitReached=false; // Reset our limit watcher. | |||
} | |||
int PollTimer::pause() { // Pause between polls. | |||
int SleepThisTime = MaximumPollTime; // Assume we're at out limit for now. | |||
if(LimitReached) { // If actually are at our limit then | |||
mySleeper.sleep(SleepThisTime); // use the current value. | |||
} else { // If we are still expanding then | |||
SleepThisTime = FibA+FibB; // Calculate the time to use and | |||
if(SleepThisTime >= MaximumPollTime) { // check it against the limit. If | |||
SleepThisTime = MaximumPollTime; // we reached the limit, us that value | |||
LimitReached = true; // and set the flag. | |||
} else { // If we haven't reached the limit yet | |||
FibB=FibA; // then shift our events and remember | |||
FibA=SleepThisTime; // this one to build our spiral. | |||
} | |||
mySleeper.sleep(SleepThisTime); // Take a nap. | |||
} // Then FIRE THE MISSILES! | |||
return SleepThisTime; // Tell the caller how long we slept. | |||
} | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class Timer - This one acts much like a stop watch with millisecond | |||
// resolution. The time is based on wall-clock time using gettimeofday(). | |||
/////////////////////////////////////////////////////////////////////////////// | |||
#ifdef WIN32 | |||
// Here is the win32 version of getLocalRawClock() | |||
#define TimerIsUnixBased (false) | |||
msclock Timer::getLocalRawClock() const { | |||
FILETIME t; // We need a FILETIME structure. | |||
msclock c; // We need a place to calculate our value. | |||
GetSystemTimeAsFileTime(&t); // Grab the system time. | |||
c = (unsigned long long int) t.dwHighDateTime << 32LL; // Put full seconds into the high order bits. | |||
c |= t.dwLowDateTime; // Put 100ns ticks into the low order bits. | |||
c /= 10000; // Divide 100ns ticks by 10K to get ms. | |||
c -= EPOCH_DELTA_IN_MSEC; // Correct for the epoch difference. | |||
return c; // Return the result. | |||
} | |||
#else | |||
// Here is the unix/posix version of getLocalRawClock() | |||
#define TimerIsUnixBased (true) | |||
msclock Timer::getLocalRawClock() const { | |||
struct timeval t; // We need a timval structure. | |||
msclock c; // We need a place to calculate our value. | |||
gettimeofday(&t,NULL); // Grab the system time. | |||
c = t.tv_sec * 1000; // Put the full seconds in as milliseconds. | |||
c += t.tv_usec / 1000; // Add the microseconds as milliseconds. | |||
return c; // Return the milliseconds. | |||
} | |||
#endif | |||
Timer::Timer() { // Construct by resetting the | |||
start(); // clocks by using start(); | |||
} | |||
Timer::Timer(msclock startt): // Construct a timer from a specific time. | |||
RunningFlag(true), // Set the running flag, | |||
StartTime(startt), // the start time and | |||
StopTime(startt) { // the stop time clock to startt. | |||
} | |||
void Timer::clear() { // Stop, zero elapsed, now. | |||
StartTime = StopTime = getLocalRawClock(); // Set the start and stop time | |||
RunningFlag = false; // to now. We are NOT running. | |||
} | |||
msclock Timer::start() { // (re) Start the timer at this moment. | |||
return start(getLocalRawClock()); // start() using the current raw clock. | |||
} | |||
msclock Timer::start(msclock startt) { // (re) Start a timer at startt. | |||
StartTime = StopTime = startt; // Set the start and end clocks. | |||
RunningFlag = true; // Set the running flag to true. | |||
return StartTime; // Return the start clock. | |||
} | |||
msclock Timer::getStartClock() { return StartTime; } // Return the start clock value. | |||
bool Timer::isRunning() { return RunningFlag; } // Return the running state. | |||
msclock Timer::getElapsedTime() const { // Return the elapsed timeofday - | |||
msclock AssumedStopTime; // We need to use a StopTime simulation. | |||
if(RunningFlag) { // If we are running we must get | |||
AssumedStopTime = getLocalRawClock(); // the current time (as if it were stop). | |||
} else { // If we are not running we use | |||
AssumedStopTime = StopTime; // the actual stop time. | |||
} | |||
msclock delta = AssumedStopTime - StartTime; // Calculate the difference. | |||
return delta; // That's our result. | |||
} | |||
msclock Timer::stop() { // Stop the timer. | |||
StopTime = getLocalRawClock(); // Grab the time and then stop | |||
RunningFlag=false; // the clock. | |||
return StopTime; // Return the time we stopped. | |||
} | |||
msclock Timer::getStopClock() { return StopTime; } // Return the stop clock value. | |||
double Timer::getElapsedSeconds() const { // Calculate the elapsed seconds. | |||
msclock e = getElapsedTime(); // Get the elapsed time in msecs. | |||
double secs = (double) e / 1000.0; // Calculate seconds from msecs. | |||
return secs; | |||
} | |||
bool Timer::isUnixBased() { return TimerIsUnixBased; } // Is this timer unix based? | |||
msclock Timer::toWindowsEpoch(msclock unixt) { // Convert a unix based msclock to win32 based. | |||
return (unixt + EPOCH_DELTA_IN_MSEC); // Going this way we add the epoch delta. | |||
} | |||
msclock Timer::toUnixEpoch(msclock win32t) { // Convert a win32 based msclock to a unix based. | |||
return (win32t - EPOCH_DELTA_IN_MSEC); // Going this way we subtract the epoch delta. | |||
} | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class Timeout - This one uses a Timer to establish a timeout value. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
Timeout::Timeout(msclock duration):myDuration(duration) { } // Create, set the duration, start. | |||
msclock Timeout::setDuration(msclock duration) { // Set/Change the duration in milliseconds. | |||
myDuration = duration; // (re) Set the duration. | |||
return myDuration; // Return the current (new) duration. | |||
} | |||
msclock Timeout::getDuration() { // Return the current duration. | |||
return myDuration; | |||
} | |||
msclock Timeout::restart() { // Restart the timeout timer. | |||
return myTimer.start(); // Restart the clock and return the time. | |||
} | |||
msclock Timeout::getElapsedTime() { // Get elapsed milliseconds. | |||
return myTimer.getElapsedTime(); // Return the elapsed time. | |||
} | |||
msclock Timeout::getRemainingTime() { // Get remaining milliseconds. | |||
msclock remaining = 0ULL; // Assume we're expired to start. | |||
msclock elapsed = myTimer.getElapsedTime(); // Get the elapsed time. | |||
if(elapsed < myDuration) { // If there is still time then | |||
remaining = myDuration - elapsed; // calculate what is left. | |||
} | |||
return remaining; // Return what we found. | |||
} | |||
bool Timeout::isExpired() { // Return true if time is up. | |||
return (!(myTimer.getElapsedTime() < myDuration)); // Check the elapsed time against myDuration. | |||
} |
@@ -0,0 +1,360 @@ | |||
// timing.hpp | |||
// | |||
// Copyright (C) 2004-2009 MicroNeil Research Corporation. | |||
// This program is part of the MicroNeil Research Open Library Project. For | |||
// more information go to http://www.microneil.com/OpenLibrary/index.html | |||
// | |||
// This program is free software; you can redistribute it and/or modify it | |||
// under the terms of the GNU General Public License as published by the | |||
// Free Software Foundation; either version 2 of the License, or (at your | |||
// option) any later version. | |||
// | |||
// This program is distributed in the hope that it will be useful, but WITHOUT | |||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |||
// more details. | |||
// | |||
// You should have received a copy of the GNU General Public License along with | |||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |||
// Place, Suite 330, Boston, MA 02111-1307 USA | |||
// The purpose of this module is to abstract timing functions for | |||
// cross platform C++ development usning GNU compilers in *nix and | |||
// win32 environments (minGW). Timing resolution is in milliseconds | |||
// throughout to provide consistency and reasonable expectations. | |||
// 20060404 _M Added Timer::start(msclock startt) for chaining. | |||
// 20060403 _M This "timing" module has been completed and tested on | |||
// win32 (compiled using CodeBlocks and minGW) and on RHES3 (g++). | |||
// | |||
// The bottom line is that this code is perfect for most applications that | |||
// don't need real-time interaction on the win32 platform. That is, for | |||
// any application that can accept 15ms or so of "wiggle" in their timing | |||
// functions. On linux I was able to observe very consistent results with | |||
// variations measured in 1-2ms. | |||
// | |||
// Aynone seeking real-time accuracy on the win32 platform will need to contend | |||
// with all of the landmines in place against that and will need to write more | |||
// ellaborate versions of Timer::getLocalRawClock() and Sleeper::doRawSleep() | |||
// aa appropriate for their application. The existing code should work fine for | |||
// almost all other applications. | |||
// | |||
// This code was written with that in mind to some extent. That is why all of | |||
// the timing functions are measured in milliseconds rather than microseconds | |||
// or something smaller. Milliseconds are convenient for polling delays, | |||
// communications timeouts, measuring database application performance, and | |||
// other similar tasks. For that purpose - this timing module is just fine :-) | |||
// 20060323 _M Rewrote this module from a combination of previous | |||
// bits and pieces. This module will provide classes that abstract | |||
// timing functions for use in GNU projects on *nix and win32 systems. | |||
#ifndef MNR_timing | |||
#define MNR_timing | |||
// Introduce the standard namespace /////////////////////////////////////////// | |||
using namespace std; | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class Sleeper - An object that remembers how long it is supposed to sleep. | |||
// This allows an application to create "standard" sleep timers that can be | |||
// established at the top of the code (easy to find) and reused. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
static const int MinimumSleeperTime = 1; // Minimum msec allowed. | |||
static const int MaximumSleeperTime = 2000000000; // Maximum msec allowed. | |||
class Sleeper { | |||
private: | |||
int MillisecondsToSleep; // How long to sleep. | |||
void doRawSleep(int x); // Abstracted local sleep function. | |||
public: | |||
class BadSleeperValue {}; // Exception for bad values. | |||
Sleeper(); // Constructed empty - set to zero. | |||
Sleeper(int x); // Constructed with a value. | |||
int setMillisecondsToSleep(int x); // Safe way to set the vlaue. | |||
int getMillisecondsToSleep(); // Safe way to get the value. | |||
void sleep(); // Here's where we snooze if we can. | |||
void sleep(int x); // Shortcut - set the time and then sleep. | |||
void operator()(); | |||
}; | |||
/* Sleeper Documentation... | |||
** | |||
** Sleeper.Sleeper() | |||
** Constructs a Sleeper with a zero value. | |||
** | |||
** Sleeper.Sleeper(int x) | |||
** Constructs a Sleeper to "snooze" for x milliseconds. | |||
** | |||
** Sleeper.setMillisecondsToSleep(int x) | |||
** Sets the sleep time for the Sleeper and returns the time set. | |||
** If the value is out of range then the Sleeper::BadSleeperValue will be thrown. | |||
** | |||
** Sleeper.getMillisecondsToSleep() | |||
** Returns the current MillisecondsToSleep. | |||
** | |||
** Sleeper.sleep() | |||
** Goes to sleep for MillisecondsToSleep. If MillisecondsToSleep has not been set | |||
** then the function throws Sleeper::BadSleeperVlaue. | |||
** | |||
** Sleeper.sleep(int x) | |||
** First sets MillisecondsToSleep, then goes to sleep. If x is too big or too small | |||
** then the method throws Sleeper::BadSleeperValue. | |||
*/ | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class PollTimer - An object to pause during polling processes where the | |||
// time between polls is expanded according to a Fibonacci sequence. This | |||
// allows self organizing automata to relax a bit when a particular process | |||
// is taking a long time so that the resources used in the polling process are | |||
// reduced if the system is under load - The idea is to prevent the polling | |||
// process from loading the system when there are many nodes poling, yet to | |||
// allow for a rapid response when there are few or when the answer we're | |||
// waiting for is ready quickly. We use a Fibonacci expansion because it is | |||
// a natural spiral. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
class PollTimer { | |||
private: | |||
Sleeper mySleeper; // We need a sleeper to do this. | |||
int NominalPollTime; // Normal poll delay in msec. | |||
int MaximumPollTime; // Maximum poll delay in msec. | |||
bool LimitReached; | |||
// Why not use unsigned int everywhere? Because sometimes libraries use | |||
// int for their Sleep() functions... so we calculate with unsigned ints, | |||
// but we use ints for inputs to keep things sane. Wierd bugs show up if | |||
// signed ints overflow in clock_t values -- this learned by experience. | |||
unsigned int FibA; // One poll delay ago. | |||
unsigned int FibB; // Two poll delays ago. | |||
// FibA and FibB are used to generate the fibonacci expansion. The current | |||
// delay will always be the sum of the previous two delays assuming that | |||
// there was always a first delay of 1 x Nominal Poll time. This results | |||
// in an expansion like this: 1,2,3,5,8,13,21,34,... | |||
public: | |||
class BadPollTimerValue {}; // Exception for bad values. | |||
PollTimer(int Nom, int Max); // Construct with nominal and max delays. | |||
int setNominalPollTime(int Nom); // Set the Nominal Poll Time. | |||
int setMaximumPollTime(int Max); // Set the Maximum Poll Time. | |||
void reset(); // Reset the spiral. | |||
int pause(); // Pause between polls. | |||
}; | |||
/* PollTimer Documentation... | |||
** | |||
** PollTimer(nominal_delay, maximum_delay) | |||
** Constructs a PollTimer and sets it's basic parameters. If the parameters are | |||
** out of range then BadPollTimerValue will be thrown. | |||
** | |||
** setNiminalPollTime(Nom) | |||
** Sets the nominal (base unit) poll delay time. Throws BadPollTimerValue if | |||
** the value is out of range. | |||
** | |||
** setMaximumPollTime(Max) | |||
** Sets the maximum (upper limit) poll delay. If the value is out of range then | |||
** BadPollTimerValue is thrown. | |||
** | |||
** reset() | |||
** Resets the current poll delay to the nominal delay. The next call to pause() | |||
** will sleep for the nominal delay. This method would normally be called when | |||
** a poll cycle turns up some work to do so that subsequent poll delays will be | |||
** short - leading to a responsive system. | |||
** | |||
** pause() | |||
** Calling this method will cause the current thread to sleep for the current | |||
** poll delay time. Subsquent calls to pause will cause longer sleep times | |||
** according to a natural spiral. An intervening call to reset() will shorten | |||
** the delay times again. This method returns the number of milliseconds | |||
** paused on this pass. | |||
*/ | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class Timer - This one acts much like a stop watch with millisecond | |||
// resolution. The time is based on wall-clock time using gettimeofday() or | |||
// GetSystemTimeAsFileTime depending on the OS. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
typedef unsigned long long int msclock; // 64 bit int used for measuring time in ms. | |||
static msclock EPOCH_DELTA_IN_USEC = 11644473600000000ULL; // Microseconds difference between epochs. | |||
static msclock EPOCH_DELTA_IN_MSEC = EPOCH_DELTA_IN_USEC / 1000; // Milliseconds difference between epochs. | |||
class Timer { | |||
private: | |||
msclock StartTime; // TimeOfDay at start. | |||
msclock StopTime; // TimeOfDay at stop or check. | |||
bool RunningFlag; // True if clock is running. | |||
msclock getLocalRawClock() const; // Derives unix epoch ms from local clock. | |||
public: | |||
Timer(); // Construct and start the Timer. | |||
Timer(msclock startt); // Constructs and starts from a specific moment. | |||
void clear(); // Stop and set elapsed time to zero at now. | |||
msclock start(); // Re(set) the Start time to this moment. | |||
msclock start(msclock startt); // Re(set) the Start time to startt. | |||
msclock getStartClock(); // Return the unix epoch start clock. | |||
bool isRunning(); // Return true if the clock is running. | |||
msclock getElapsedTime() const; // get milliseconds since Timer start. | |||
msclock stop(); // Stop the Timer. | |||
msclock getStopClock(); // Return the unix epoch stop clock. | |||
double getElapsedSeconds()const; // Get floating point elapsed seconds. | |||
bool isUnixBased(); // True if base clock is unix/posix. | |||
msclock toWindowsEpoch(msclock unixt); // Converts unix t to windows t. | |||
msclock toUnixEpoch(msclock win32t); // Converts windows t to unix t. | |||
}; | |||
/* Timer Documentation... | |||
** | |||
** All raw clock values are returned as 64 bit unsigned integers using a special | |||
** type - msclock. Conversions are done using microsecond accuracy. | |||
** | |||
** Timer() | |||
** Creates a new timer and starts the clock at this moment. | |||
** | |||
** Timer(msclock startt) | |||
** Creates a new timer and starts the clock at a specific moment. This can be | |||
** used to start one clock precisely when another one ends as in: | |||
** new Timer B(A.stop()); | |||
** | |||
** getLocalRawClock() | |||
** This method uses slightly different code depending upon whether the system | |||
** is a unix box or win32. In both cases the function determines the local time | |||
** value as a 64bit integer with millisecond resolution using the unix epoch of | |||
** Jan 1, 1970. | |||
** | |||
** start() | |||
** This method starts or restarts the Timer's clock at this moment. | |||
** The msclock value for the start clock is returned. | |||
** | |||
** start(msclock startt) | |||
** This method starts or restarts the Timer's clock at the time specified | |||
** int startt. This is used for chaining operations such as B.start(A.stop()) | |||
** | |||
** getStartClock() | |||
** This method returns the start clock value. | |||
** | |||
** isRunning() | |||
** Returns true if the clock is running. | |||
** | |||
** getElapsedTime() | |||
** This method returns the elapsed time in milliseconds. | |||
** If the clock is running this value will be different each time it is called. | |||
** | |||
** stop() | |||
** This method stops the clock and returns the stop clock value. If this method | |||
** is called more than once then the stop clock is reset to the current time and | |||
** that time is returned. | |||
** | |||
** getStopClock() | |||
** This method returns the stop clock value. If the Timer is still running | |||
** then the result is the same as calling getElapsedTime(). If the clock is | |||
** not running then the time the clock was last stopped is returned. | |||
** | |||
** getElapsedSeconds() | |||
** Returns the elapsed time as a floating point number with millisecond | |||
** resolution. | |||
** | |||
** isUnixBased() | |||
** Returns true if the raw clock values are being derived from a unix/posix OS. | |||
** | |||
** toWindowsEpoch(msclock unixt) | |||
** Converts unixt to a windows value by adding the epoch delta. | |||
** | |||
** toUnixEpoch(msclock win32t) | |||
** Converts win32t to a unix value by subtracting the epoch delta. | |||
*/ | |||
//////////////////////////////////////////////////////////////////////////////// | |||
// class ScopeTimer - Runs a Timer while ScopeTimer is in scope. | |||
//////////////////////////////////////////////////////////////////////////////// | |||
class ScopeTimer { // Runs a timer when in scope. | |||
private: | |||
Timer& myTimer; // This is the timer to run. | |||
public: | |||
ScopeTimer(Timer& T) : myTimer(T) { myTimer.start(); } // The Timer starts at construction. | |||
~ScopeTimer() { myTimer.stop(); } // The Timer stops at destruction. | |||
}; | |||
/////////////////////////////////////////////////////////////////////////////// | |||
// class Timeout - This one uses a Timer to establish a timeout value. | |||
/////////////////////////////////////////////////////////////////////////////// | |||
class Timeout { | |||
private: | |||
Timer myTimer; // We need a timer to do this. | |||
msclock myDuration; // Milliseconds before timout expires. | |||
public: | |||
class BadTimeoutValue {}; // If the value is bad throw this. | |||
Timeout(msclock duration); // Create and set the duration. | |||
msclock setDuration(msclock duration); // Set/Change the duration in milliseconds. | |||
msclock getDuration(); // Return the current duration in milliseconds. | |||
msclock restart(); // Restart the timeout timer. | |||
msclock getElapsedTime(); // Get elapsed milliseconds. | |||
msclock getRemainingTime(); // Get remaining milliseconds. | |||
bool isExpired(); // Return true if time is up. | |||
}; | |||
/* Timeout Documentation... | |||
** | |||
** Timeout(int duration) | |||
** Creates a Timout timer and sets the duration in milliseconds. | |||
** | |||
** setDuration(int duration) | |||
** Sets or changes the duration of the timeout timer. | |||
** The Timout is NOT reset by this method. This allows you to change | |||
** the timeout on the fly. | |||
** | |||
** restart() | |||
** Restarts the timeout timer. | |||
** | |||
** getElapsedTime() | |||
** Returns the number of milliseconds elapsed since the Timout was created | |||
** or reset. | |||
** | |||
** getRemainingTime() | |||
** Returns the number of milliseconds remaining before time is up. | |||
** | |||
** isExpired() | |||
** Returns true if time is up. | |||
*/ | |||
#endif // End MNR_timing once-only switch. |